COLLECTIVE BEHAVIOUR

PARAMETER INFERENCE FOR MODEL COMPARISON

Jack Walton
June 19, 2019

Newcastle University

WHAT'S IT ALL ABOUT?

Where's the maths?

- Many agent-based models (ABMs) have been proposed to try explain collective motion
- ABMs follow a Lagrangian approach, where behaviour is modelled at an individual level
- Simple rules compound to create complex behaviour

WHERE DO WE FIT IN?

- Loads of different ABMs have been proposed
- Very little quantitative comparison between model and data
- Working in a Bayesian paradigm we to seek carry out rigorous model verification / falsification

OUR DATASET

- Courtesy of Hayley Moore of the CDT programme
- Tracks positions of flocking sheep through time
- Raw data
- Extracted data

THE MODEL

Positional update:

$$
\mathbf{x}_{i, t+1}=\mathbf{x}_{i, t}+\mathbf{v}_{i, t}
$$

Directional update:

$$
\theta_{i, t+1}=\operatorname{atan} 2\left(\sum_{j=1}^{N} \omega_{i j, t} \sin \theta_{j, t}, \sum_{j=1}^{N} \omega_{i j, t} \cos \theta_{j, t}\right)+\epsilon_{i, t}
$$

where $\epsilon_{i, t} \sim N\left(0, \sigma_{Y_{i}}\right)$ and

$$
\omega_{\mathrm{ij}, \mathrm{t}}=\frac{1}{\sqrt{2 \pi \sigma_{x_{i}}^{2}}} \exp \left(\frac{-d_{i, t}^{2}}{2 \sigma_{x_{i}}^{2}}\right)
$$

IN SUMMARY

The model:

- Each individual's behaviour is controlled by two parameters, $\sigma_{X_{i}}$ and $\sigma_{Y_{i}}$
- $\sigma_{X_{i}}$ controls how strongly agent i interacts with neighbours
- $\sigma_{Y_{i}}$ controls how much noise agent i experiences

Our goal:

- Infer values of $\sigma_{X_{i}}$ and $\sigma_{Y_{i}}$ for every sheep in our dataset

A BLACK BOX SOLUTION WITH STAN

- Stan is a probabilistic programming language, similar to BUGS and JAGS.
- Implements NUTS algorithm - a variant of HMC
- Input: data and model specification
- Output: posterior densities of parameters

RESULTS: POSTERIOR DENSITIES

RESULTS: FORWARD SIMULATIONS

Current model fitting

As an $A R(p)$ model:

$$
\begin{aligned}
\theta_{i, t+1}= & \operatorname{atan} 2(
\end{aligned} \sum_{k=1}^{p} \sum_{j=1}^{N} \varphi_{j, t-k+1} \omega_{i j, t-k+1} \sin \theta_{j, t-k+1},
$$

As a topological model:

$$
\begin{aligned}
& \theta_{i, t+1}=\operatorname{atan} 2\left(\sum_{j \in \mathcal{N}_{i, t}} \sin \left(\theta_{j, t}\right)+n_{i} \bmod \left\lfloor n_{i}\right\rfloor \sin \left(\theta_{j_{*}, t}\right),\right. \\
& \left.\sum_{j \in \mathcal{N}_{i, t}} \cos \left(\theta_{j, t}\right)+n_{i} \bmod \left\lfloor n_{i}\right\rfloor \cos \left(\theta_{j_{*}, t}\right)\right)+\epsilon_{i, t}
\end{aligned}
$$

QuEStions?

