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Abstract

Thestudy of collective behaviour—broadly defined as the formation ofmacro-level
structures from the interactions between individuals—has in recent years become
a thriving topic of multi-disciplinary research. Under consideration of biological-
fitness the scientist has been able to reason about why these structures form, and
the advantages which the collective can afford the individual. However, much less
is known about how these structures are formed and maintained in the first place.

Much work has been invested in the development of mathematical models which
seek to explain the formation and maintenance of animal aggregations. Research
has shown that behaviour reminiscent of real flocking events can arise from simple
mathematical models which describe how individuals interact with one another.
However, much of this modelling relies on aprioristic assumptions about how indi-
viduals behave and interact, with little-to-no verification against real observation.

In this workwe examinemathematicalmodels popular in the literature and suggest
modifications motivated by considerations of biological-realism. In particular we
advocate adoption of continuous interaction rules, and consider how behavioural
and biological variation can be accounted for by imposing hierarchical structure.

We proceed to fit these models of collective behaviour to observations of real and
simulated flocking events. Model fitting is performed in a Bayesian framework,
allowing the quantification of parameter uncertainty. Fitting models to simulated
data provides opportunity to assess the effectiveness and accuracy of our inference
schemes, before attempting the same inference on real observation. Multiple com-
peting models are fit to the same data, with the predictive performance of these
models ranked using ideas from themodel-selection literature. We are then able to
recommend a subset of the candidate models as providing the best performance.

Finally, consideration is made for datasets which exhibit missing observations.
Such missingness occurs naturally owing to the fixed-location recording equip-
ment used to record flocking events. We argue that this missingness cannot be
ignored, and must be accounted for during any model-fitting process. Techniques
are outlined which allow the researcher to account for missingness. Simulation
studies are performed which demonstrate the efficacy of the outlined approach,
before the techniques are demonstrated on a real dataset exhibiting missingness.
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1
Introduction

1.1 Motivation

It is perfectly possible to live our everyday lives without giving a second thought to the world
around us. In fact, it can be rather easy to do so. Nature becomes something secondary:
an inconvenience of the past, something tamed by modern amenity. But every once in a
while comes an event which demands our attention. These displays of nature—the great
ones—have the power to invoke awe and wonder, offering a renewed appreciation of the
natural world, and our place within it.

One of these great displays of nature is represented by the collective motion of animals.
The canonical example of collective motion being the starling murmuration (Figure 1.1).
In these events starlings gather in huge numbers and perform the most mesmerising of
ballets; the entire flock moving as if some fluid object. Coordinated, yet unpredictable, no
two such murmurations are ever the same.

Another striking example of collective behaviour is given by the densemilling structures
sometimes formed by shoals of fish (Figure 1.2). In these structures the individuals form
something greater than the sum of their parts: their shoal taking on a life of its own. With a
flash of silver, and in the blink of an eye, the shoal can change direction, offering an effective
defence against predation.

Collective motion, broadly defined as the formation of macro-level structures from the
interactions between individuals (Camazine et al. 2003), has been observed over many
different length scales, and has been exhibited by many different species (Allee 1931). But
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2 Introduction

Figure 1.1: A group of starlings, here consisting of thousands of individual members, gather to flock
in the evening sky. These flocking events (often called murmurations), represent one of
themost eye-catching displays of collective behaviour. This particular eventwas captured
near Gretna, in the Scottish Borders. Photograph: Owen Humphreys/PA.

through all its variations and incantations, the one thing that remains constant is the phe-
nomenon’s ability to capture the attention and wonder of the observer.

Through captured imaginations, and over many years, collective behaviour has become
a thriving topic of multidisciplinary research, holding captive the minds of physicists, bio-
logists, mathematicians, and statisticians. Though our understanding has evolved signific-
antly from early suggestions that collective behaviour results from thought-transference
and telepathy between individuals (Selous 1931), there is still much that remains unknown.

In many cases, the why of collective behaviour is broadly understood. From an evolu-
tionary standpoint we can reason about the benefits which collective behaviour brings to
the individuals involved. For example, it is known that aggregation can provide an effect-
ive defence against predation (Landeau and Terborgh 1986), and that both foraging and
migration can benefit from the knowledge of the collective (Simons 2004).

Despite this, much less is known about the how of collective behaviour. Themechanisms
which lead to the formation andmaintenance of aggregations remain elusive, and are a topic
of much continued interest. The hope is that the study of mathematical models of flocking,
and the comparison of these models with real flocking events, will lead to insights about
the mechanics which underlie these phenomena. In recent years modern computing has
made the process of simulating such models (relatively) pain-free. However, a lack of data
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Figure 1.2:Mackerel forming a tight milling structure in open water. The individuals behave as
one entity, and can swell, change direction, deform and reform in fractions of a second.
These structures form spontaneously in the presence of danger, and act as a defence
against predation.

describing real flocking events has made the comparison between model and data difficult.

Previously, much work has been invested in developing the theoretical models which
seek to explain emergent behaviour by interactions at an individual level. Such models
have shown that individual interactions are sufficient to produce group-level structures
(Aoki 1982). Many different simulations, implementing disparate interaction rules, are able
to produce behaviour reminiscent of real flocking systems. However, these models have
largely only been verified with comparison to empirical observation at a qualitative level,
and thorough quantitative comparison between data and theory has been lacking. The lack
of quantitative comparison between model and data can largely be attributed to the scarcity
of appropriate empirical data.

However, in recent years technological and methodological advances have made it pos-
sible to capture themovements of large groups of animal aggregations (Ballerini et al. 2008).
With this data, it is only now that we are in a position to make robust comparison between
model prediction and real-world observation.

This thesis considers and develops theoretical models of collective behaviour popular
in the literature. This development is guided by considerations of biological realism. Simu-
lation studies are performed which show that the developed models can be fit to simulated
data, after which the same models are fit to real data. The efficacy of each fitted model is
compared, and a subclass of the candidate models are presented as offering the best fit.
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1.2 Thesis overview

In Chapter 2 the reader is given a review of the literature surrounding the study of collective
behaviour. Important ideas and results from the field are introduced, summarised and
discussed. After relaying the main results from the literature, open problems and the future
of research in the field are discussed.

Bayesian statistics is introduced to the reader inChapter 3. Theunderlying philosophyof
the Bayesian paradigm, as well as important results, techniques and algorithms are outlined.
Consideration is given for common problems that the Bayesian practitioner may encounter,
as well as how one might address these problems.

In the proceeding chapter, Chapter 4, a class of model popular in the literature of col-
lective behaviour is introduced. The shortcomings of this model are then considered and
summarised, with alterations proposed to address the outlined concerns. The proposed
changes are motivated by considerations of biological-realism.

Following on from this, Chapter 5 details the results of a number of so-called simulation
studies. In these studies a model is forward simulated for known parameter values. A
practitioner is then tasked with capturing these known parameter values with statistical
inference. A number of simulation studies are performed on variations of a previously
considered model.

The statistical machinery built in Chapter 5 is then repurposed in Chapter 6, as our
developed models are fit to real observation. Fitting a number of different models to the
same data, the predictive performance of these models are compared, and a subclass of
these models are identified as providing the best fit.

Chapter 7 considers the problem of missing data. It is argued that the nature of flocking
events mean that missing data becomes an inevitable issue. Algorithms are outlined which
allow the scientist to account for additional uncertainty introduced by missingness. Simula-
tion studies are performed which demonstrate the efficacy of this approach. Following this
a dataset of a real flocking event with missing observations is introduced. The limitations
of previous studies of this data are outlined. The analysis presented in this thesis addresses
the shortcomings of this earlier work; accounting for the additional uncertainty introduced
by the missing observations.

For the uninitiated, a review of circular statistics is presented in Appendix A. This
review motivates the study of circular statistics, and argues its relevance to the scientist
involved in the study of collective behaviour.



2
Literature review
There exists a large body of literature relating to the phenomenon of collective behaviour.
Particularly unique to this literature is the variety of backgrounds in which the authors
are trained. Biologists, physicists, applied mathematicians and statisticians have all made
significant contributions to the field of collective behaviour.

In this chapter we shall discuss some of the most important ideas and results from the
literature surrounding the study of collective behaviour. First, we provide an overview
and discussion of the evolutionary advantages which collective behaviour affords individu-
als. After this we will discuss Eulerian and Lagrangian models: the two main modelling
paradigms used to simulate flocking events. Finally we review previous workwhich focused
on recording and utilising empirical data to assess predictive performance of theoretical
models.

2.1 Biolo gical function

Behaving as a group can bring many advantages to the individuals involved. One classic-
ally considered benefit of aggregation is an improved defence against predation; shoaling
groups of fish have the ability to confuse predators, as predators have difficulty selecting an
individual target amongst a group (the confusion effect) (Landeau and Terborgh 1986). In
addition to this confusion effect, groups of individuals can absorb and processmore sensory
information about their environment than lone individuals are capable of, promoting the
early detection of predators (Pitcher and Parrish 1993).
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As well as providing defence against predation, behaving as a group can aid in foraging
for food as collections of individuals are able to gather more data about their environment
than solitary individuals (Clark 1986). Collective motion is also understood to aid group
navigation and migration, with the suggestion that navigational accuracy increases with
group size through the “manywrongs principle” (Simons 2004). For birds, group navigation
often brings an additional energetic advantage as individuals can work to form aerodynam-
ically efficient shapes (Weimerskirch et al. 2001). As well as these advantages, group living
can aid in facilitating reproduction and the rearing of young.

Despite the advantages afforded by collective behaviour, it isn’t without its dangers. For
example, there is an understanding that flocking behaviours may also have the unintended
consequence of actually attracting the attention of predators (Wittenberger and Hunt 1985).
A more catastrophic consequence of collective behaviour can be seen in the formation of
ant mills. Ant mills occur when a group of foraging army ants become separated from the
main column of a raiding swarm (Schneirla 1944). Each ant follows an individual in front
of it, causing the separated workers to run in a densely packed circle until they eventually
succumb to exhaustion (Schneirla 1971). This phenomenon was first recorded in 1921, when
William Beebe observed an ant mill with a circumference of 370 m (Beebe 1921). It would
take an individual ant 2.5 hours to circumnavigate a mill of this size (Surowiecki 2005).

As we have seen, much of the why of collective behaviour can be understood by consid-
ering the evolutionary advantages which group behaviour affords the individuals involved.
However, we have still yet to broach the how of collective behaviour.

2.2 Mathematical approaches

There has long existed an appeal of using mathematical models as a tool to investigate col-
lective behaviour (Aoki 1982; Okubo 1986; Reynolds 1987; Huth and Wissel 1992; Guernon
and Levin 1993; Vicsek, Czirók et al. 1995; Couzin, Krause, James et al. 2002). These models
of collective behaviour are broadly partitioned into two paradigms: the Lagrangian and
Eulerian approaches. These descriptions are analogous to the models of fluid dynamics,
where Lagrangian models consider flow in terms of interactions of fluid parcels, and Eu-
lerian models consider the changing fluid properties at a given point in space and time. In
the analogous models of collective behaviour, Lagrangian models simulate the movements
and interactions of individuals, and Eulerian models consider the changing properties of a
group through space and time.
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2.2.1 Lagrangian models

So called agent-based models (ABMs), also referred to as Lagrangian models, have proven
a useful tool in modelling collective behaviours. In these models the behaviour of an agent
is simulated at the individual level. An agent’s behaviour is determined by social interac-
tions with neighbouring individuals. Examples of typical interactions include the desire to
move in the same direction as neighbours (alignment, or orientation), the desire to avoid
collisions (repulsion) and a desire to remain close to neighbours (attraction). As well as
simulating social behaviours, ABMs also specify how an individual identifies neighbours
with which to interact. An agent may, for example, identify neighbours as those; within a
certain distance (metric interaction); positioned inside a field of vision or as one of a fixed
number of closest neighbours (topological interaction).

In a pioneering paper, Aoki (1982) developed an ABM to simulate themovements of fish
schooling in two-dimensions. Here it was shown that collective behaviour can arise from
simple interactions at an individual level, without the need of a leader, and without each
individual having information about the movement of the group as a whole. The model
simulated zonal interactions in which the area around each fish was partitioned into zones
of repulsion, alignment and attraction (correspondingly: avoid, parallel and approach in the
original publication). The partitioning of space in this way is illustrated in Figure 2.1, and
has remained a popular idea in following literature (Huth and Wissel 1992; Vicsek, Czirók
et al. 1995; Couzin, Krause, James et al. 2002; Couzin, Krause, Franks et al. 2005). This
model also accounted for fish having incomplete fields of vision. The simulation of some
unobserved region was utilised in further studies. Later, other models were also devised to
simulate fish schools (Okubo 1986; Huth and Wissel 1992).

Following this, Reynolds (1987) formulated a mathematical model, motivated by the
production of computer animations, which described the movement of birds flocking in
three-dimensional space. To produce more aesthetically pleasing animations, the software,
“Boids”, implemented additional sophistications such as banking during turns. The focus on
developing simulations to produce visually-pleasing behaviours rendered rigorous scientific
study unbefitting. Interestingly, Tim Burton’s 1992 Batman Returns used amodified version
of the Boids software to simulate animations of bat swarms and marching penguins.

Substantially more complex than Boids was the software package Massive (Multiple
Agent Simulation System in Virtual Environment), originally developed by Stephen Regel-
ous for Peter Jackson’s Lord of the Rings trilogy (Koeppel 2002). This software was used
to help generate the striking battle sequences of the trilogy, where each individual orc, elf
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zor

zoo

zoa

2π − α

Figure 2.1: An illustration, based on thework ofAoki (1982), showing the area around an agent (here,
a fish) partitioned into three zones; zor: zone of repulsion; zoo: zone of orientation (or
alignment), and zoa: zone of attraction. The missing segment behind the individual
represents a blind spot, of angle 2α, into which it cannot see.

and other miscellaneous creature of middle-earth was simulated according to the rules of
an agent-based model (Robbins 2017). In 2004, Regelous received the Scientific and En-
gineering Award from the Academy of Motion Picture Arts and Sciences for his work on
Massive. Since then, Massive has been used in films such as Inception, Harry Potter and the
order of the Phoenix, James Bond’s Spectre, and HBO’s hit TV series Game ofThrones (Fig-
ure 2.2). With this legacy in mind, in 2018 Regelous received an Emmy award to recognise
his contribution to the entertainment industry.

Not motivated by the lure of an Academy Award, but instead by research within stat-
istical physics, Vicsek, Czirók et al. (1995) introduced a simple two-dimensional model in
which self-propelled particles move with a fixed absolute velocity and align with neighbours
within some interaction radius. This model is commonly referred to as the “Vicsek Model”.
Despite its simplicity thismodel produces complex behaviour resembling that of a real biolo-
gical system. Vicsek, Czirók et al. (1995) investigated the phase transition between ordered
and disordered motion as the density of particles and noise in the system was varied. The
transition from order to disorder is an example of a spontaneously breaking (rotational)
symmetry, as the group has no preferred direction of motion a priori, but under simulation
converges upon some arbitrary direction of travel. Because of this, the Vicsek model stands
as an apparent violation of the Mermin-Wagner Theorem, which states that continuous
symmetries cannot be spontaneously broken by systems that are able to achieve long range
order in dimensions d ≤ 2 (Mermin and Wagner 1966). However, Mermin-Wagner only
applies to systems in equilibrium and the Vicsek model is out of equilibrium.
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Figure 2.2:The animation company Iloura lent heavily on the software “Massive” to orchestrate
army formations, fighting soldiers and horse actions for the dramatic scenes in HBO’s
Game of Thrones episode “Battle of the Bastards”.

Later models were developed to explore the movements of mammals and other ver-
tebrate groups. Using a three-dimensional model that follows the zonal approach of Aoki
(1982), Couzin, Krause, James et al. (2002) showed major group-level behavioural changes
as minor changes in individual interaction rules were made. With small changes in the
model parameters, groups transitioned from disordered, swarm-like behaviour, to toroidal
milling structures, to forming dynamic and highly parallel groups, as illustrated in Fig-
ure 2.3. In addition to this the author’s simulations demonstrated evidence of the collective
memory of a group, suggesting that previous group structure influences future behaviour
as interactions change.

Further research was made by Couzin, Krause, Franks et al. (2005) which investig-
ated how leaders influence the motion of travelling groups. A zonal repulsion-alignment-
attraction model was used as the basis for this work. Here, though, a proportion of the
flock were given information about a preferred direction of motion, and so balanced their
social interactions with the desire to move in this direction. Individuals in the flock did not
know which members of the group, if any, had information. Simulations showed that only
a small proportion of leaders are necessary to guide groups with a high degree of accuracy.
Further results investigated how groups of individuals make collective decisions in the face
of conflicting desires.
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Figure 2.3: Taken from Couzin, Krause, James et al. (2002), different steady-state solutions (swarm,
torus, dynamically parallel and highly parallel) obtained by making small changes to
model parameters of a three-dimensional flocking model.

As a method for exploring collective behaviour, Lagrangian models are very appealing
in their intuitiveness and in the ease of implementing explicit behavioural rules. Though
for many years the simulation and exploration of these models was limited by computing
power; modern computation allows for the simulations of large groups over many time
steps. With these advances in computing, and a growing interest in the field, a significant
proportion of the literature focuses on the analysis and exploration of agent-based models.

2.2.2 Eulerian models

Sometimes known as continuum models, Eulerian models are complementary to the Lag-
rangian approach and work at a coarse-grained level (Giardina 2008). Eulerian models are
typically constructed of a set of partial differential equations which describe how density
and other group properties develop over time. This approach to modelling is often used to
investigate the long-time spatial and density properties of groups.

One such Eulerian approach by Guernon and Levin (1993) modelled the movements of
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Figure 2.4: Aerial photography ofmigratingwildebeest showing large-scale front patterns, as presen-
ted in the work of Guernon and Levin (1993).

large groups ofwildebeest. Theirmodel predictions were comparedwith aerial observations
of wildebeest migrating through the Serengeti (Figure 2.4). The large-scale front patterns
seen in the aerial photography were reproduced by their model.

Later, Toner and Tu (1998) introduced a quantitative continuum theory of flocking.
There are similarities between the hydrodynamic equations introduced by the authors and
the Navier-Stokes equation for simple incompressible fluids. This model is capable of pre-
dicting the existence of an ordered phase of motion, as is often observed in the field, and
propagating density waves. Detailed analysis of the model is made using techniques (e.g.
dynamical renormalisation group) from nonequilibrium condensedmatter physics and can
be used to make quantitative predictions of the properties of the long-distance, long-time
behaviour of the ordered state. Eulerian models have also been used to analyse vortex and
stationary clump solutions (Topaz and Bertozzi 2004; Topaz, Bertozzi and Lewis 2006).

However, the Eulerian approach is limited. Most analyses are restricted to a single di-
mension and the approach has not proven appropriate formodelling groups of low densities
(Giardina 2008). Additionally, these models require more involved computer implementa-
tion than their Lagrangian counterparts necessitate. With this inmind, andwith the advant-
ages of the Lagrangian approach, in this thesis we will concentrate entirely on modelling
in the Lagrangian framework.
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2.3 Empirical studies

Models of collective motion rely on aprioristic assumptions about the properties and beha-
viours of individuals. It is understood that the emergence of a biologically realistic pattern
from model simulation is not sufficient evidence of model correctness. That is, the emer-
gence of a desired pattern is not sufficient evidence that a model is correctly capturing the
interactions between individuals. This observation is further compounded by the under-
standing that models implementing different local interactions can produce similar looking
behaviour at the group level; see, for instance, the similar behaviours (swarms, undirected
mills and moving aligned groups) exhibited by the zonal repulsion-alignment-attraction
model of Couzin, Krause, James et al. (2002) and the attraction-blind-angle model of
Strömbom (2011).

As such, real data describing the dynamics of animal aggregations is essential to assess
the validity and efficacy of theoretical models and the assumptions they make. With such
data it becomes possible to compare and rank the predictive performance of competing
models.

Thorough comparison between model and data has proven difficult largely because of
the scarcity of appropriate data. The collection of suitable data can be a complicated and
convoluted process. Taking observations in the field is technically demanding, requiring
the precise calibration of sensitivemeasuring equipment, not tomention the additional diffi-
culty imposed by the typically three-dimensional nature of animal aggregations. Collecting
data in a laboratory setting seems an obvious workaround, however this imposes restric-
tions on the types of behaviour which can be captured; a laboratory may be an appropriate
environment to capture the movements of fish in a tank, but it certainly isn’t appropriate to
capture the behaviour of flocking birds. Despite the difficulties associated with collecting
data, significant effort has been made to track the movements and dynamics of groups of
individuals.

Initial work was limited to tracking small numbers of individuals in groups. In these
studies individuals were not linked between frames and hence the collected data had no
dynamic component. The first breakthrough came from Cullen, Shaw and Baldwin (1965)
who used stereo photography to record the positions of fish in three-dimensions.

Fish are an appealing subject to study as experiments are easily conducted in a laboratory
setting. Furthermore, the movements of fish can effectively be restricted to two-dimensions
by conducting the experiments in shallow water. With these considerations, further re-
search also concentrated on fish (Partridge et al. 1980; Long, Aoyama and Inagaki 1985).
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Figure 2.5: A flock of 1246 starlings reconstructed in three-dimensions. Photographs taken at the
same instant but 25 m apart (a–b) are used to reconstruct their three-dimensional po-
sitions (c–d). To perform reconstruction Ballerini et al. (2008) needed to match each
bird in (a) to its corresponding position in (b). The red squares show five matched pairs
of birds.

Having collected empirical data, these studies investigate properties such as the distance
of individuals to their nearest neighbour, or the direction from an individual toward their
nearest neighbour. Empirical studies were also made of small groups of flocking birds, with
similar statistics and properties realised (Major and Dill 1978; Budgey 1998).

More recently, a breakthrough study by Ballerini et al. (2008) reconstructed the three-
dimensional positions of flocks of starlings consisting of up to 2600 individuals (Figure 2.5).
To collect this data the authors used a combination of stereometric and computer vision
techniques. Having extracted the data, the authors began by constructing angular density
plots of nearest neighbours. These plots revealed a strong anisotropy in the flock, with a
lack of nearest neighbours positioned along the direction of motion. Having investigated
how this anisotropy decays as a function of nearest neighbour, the authors concluded that
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Figure 2.6: An image of field data and visualisations of the transformations used to extract positions
of individuals in a flock of foraging birds (Lukeman, Li and Edelstein-Keshet 2010).

interactions are not dependent on metric distance (interactions with agents within a fixed
distance), asmostmodels in the literature assume, but on a topological distance (interaction
with a fixed number of closest agents, irrespective of distance). This analysis suggested that
on average a starling interacts with between six and seven of its closest neighbours.

A significant contribution to the field was made by Lukeman, Li and Edelstein-Keshet
(2010), who collected and analysed data of large flocks of ducks interacting on the sur-
face of a lake. Crucially, this dataset tracked individuals between frames and therefore
allowed the reconstruction of a bird’s trajectory through space and time. This data showed
an increase by a factor of ten the number of individuals which could be reliably tracked
though time (Lukeman 2009). Plots of nearest neighbour densities were constructed from
the extracted dataset. It was observed from these plots that the highest density of neigh-
bours occurs at some preferred distance in front of and behind the focal bird. Further
analysis fitted varying zonal models to the data. Model parameters were fitted which could
best reproduce angular and radial neighbour distributions. It was concluded that a zonal
repulsion-alignment-attraction model with an additional frontal interaction was best able
to reproduce the desired neighbour distributions.
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Following this, Katz et al. 2011 investigated two and three fish shoals of golden shiners.
Data was recorded by placing fish in shallow tanks of water and using custom tracking
software to convert video footage into data describing the centre of mass of individual fish
through time. Working in a classical mechanics framework the authors considered the ef-
fective forces acting on a focal fish as a function of position and velocity. The authors found
that the dominant interaction between fish was the regulation of their speed. No evidence
was found of an explicit alignment interaction between individuals; instead, alignment
occurred as a product of attraction and repulsion between individuals. Pairwise interac-
tions were seen to predict the spatial distributions of neighbours, and this observation was
validated for shoals of 10 and 30 individuals.

With many different models capable of producing realistic-looking flocks, researchers
have sought to use ideas from themodel-selection literature to quantifymodel performance.
Mann et al. (2013) fit a number of models—including: a topological model; a non-local
model in which all individuals interact, and a variety of different spatial models—to data
describing the collective motion of glass prawns confined to an annular arena. To quantify
the performance of each candidate model the authors computed the marginal likelihood.
With this the authors were able to compare model performance and conclude that a spatial
model with a persistent “memory” effect provided the best fit to their data. Following
the methodology outlined by Mann et al. (2013), Strandburg-Peshkin et al. (2013) used
the marginal likelihood to compare the performance of models with metric, topological,
Voronoi, and visual interaction rules, to explain themovements of shoals of fish. In doing so
the authors were able to conclude that Voronoi and visual models were better at explaining
their data than metric and topological models.

The marginal likelihood provides an appealing measure with which to compare model
fits: penalising models for complexity, and hence favouring simpler models over complex
models. Although the marginal likelihood is often used to compare model performance,
under certain circumstances the marginal likelihood is understood to be highly sensitive
to prior dispersion, even when the posterior is robust against prior dispersion (Fong and
Holmes 2020). As such, estimating the marginal likelihood with information criteria (Sec-
tion 3.3.1) remains a popular alternative approach to model comparison.

Analysis of empirical data has so far focused on epiphenomena such as nearest neigh-
bour distances or angular neighbour densities. Research has then focused on fitting models
which are best able to replicate these properties, rather than movements of individuals
themselves. With technological and methodological advances we expect that more and
more empirical data will become available in the future.
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2.4 Numerical studies

Mann (2011) acknowledged that an important aspect of model fitting is knowing the asso-
ciated uncertainty of inferred parameters. The author discussed the importance of quanti-
fying uncertainty in parameter inference on collective behaviour models, as the associated
empirical datasets often have high levels of noise. With the importance of capturing uncer-
tainty in mind, Mann demonstrated a fully Bayesian approach to parameter inference on
data simulated from a collective behaviour model. Here, in contrast to the more numerous
empirical studies, parameters were inferred on their ability to explain the movements of
agents, as opposed to the ability to reproduce epiphenomena such as nearest neighbour
densities or angular neighbour distributions.

The agents in Mann’s model moved under a weighted sum of alignment and attraction.
After ten time steps the simulated data transitioned from disordered motion to a steady
state rotating mill. The author then compared the ability to infer the weighting parameter,
interaction radius and other properties of the agents in two situations: before and after the
achievement of a steady state. It was discovered that the interaction radius could not be
reliably inferred when the agents had formed the rotating mill structure, although it could
be inferred in the disordered motion before steady state. This result can be understood by
considering that stable groups present a limited number of particle configurations, and are
therefore less informative than out of equilibrium groups.

Although not utilised frequently in the literature, such simulation studies represent a
useful aid in developing the statistical machinery to fit models of collective behaviour to
real data.

Conclusions

Although our understanding of collective behaviour has developed considerably from early
speculations of telepathy, there still remain many unknowns. We saw that the notion of
biological fitness goes a long way to explaining the why of collective behaviour. However,
we also reflected on how much is unknown about the how of collective behaviour.

Much of the literature was seen to have utilised mathematical models in an attempt
to understand the mechanics underlying the formation and maintenance of flocks. Two
popular modelling paradigms were introduced: Eulerian, and Lagrangian. Considering the
strengths andweaknesses of these approaches, we concluded that the Lagrangian framework
represents a more intuitive and appealing paradigm for our study of collective behaviour.
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Having considered a number of Lagrangian models, we saw that a variety of different
models were able to produce visually similar flocking events. We argued that comparison
between model and data is essential to assess the performance and realism of theoretical
models. A review of the literature taking measure of real flocking events was detailed.
Previous work has been limited by the availability of data of flocking events. When data
of real events has been utilised, the focus has been on fitting models to best reproduce
properties such as nearest-neighbour densities. We argue that the fitting process should
instead centre on explaining the movements of the flock, rather than some epiphenomena
of their movements.

In this thesis we seek to address the shortcomings of previous work. In particular, we
seek to fit theoretical models of collective behaviour to observations of real events. In
contrast with previous work, this fitting process will seek to explain the movements of
flocks, rather than some statistical properties of the flocks. Parameter uncertainty will be
quantified in all subsequent analyses. In addition to this, multiple competingmodels will be
fit to the same observations, allowing us to perform a quantitative comparison of predictive
performance, and assess aprioristic modelling assumptions.





3
Bayesian statistics

In this thesis we utilise methods from Bayesian inference to fit mathematical models of
collective behaviour to real and simulated data. Bayesian inference represents a fully prob-
abilistic approach to parameter inference. This allows a practitioner to quantify their un-
certainties about inferred parameter values. In addition to this, the Bayesian framework
permits flexiblemodel structures and potential inclusion of expert information via the prior
distribution. With this we seek to fit newly acquired data to generalisations of a popular
agent-based model from the literature.

In this chapter we shall introduce and outline some important concepts of Bayesian
inference. Algorithms to infer model parameters from data will be presented, and the
interpretation of such output shall be discussed. Wewill alsomake brief study of some ideas
from the literature of model selection. The study of model selection allows a practitioner
to make quantitative comparison between competing models.

3.1 Bayesian inference

Having observed data x we wish to quantify our beliefs about the model parameters θ =
(θ1, θ2, . . . , θd)T . Given the observed data, the likelihood function is defined as:

L(θ ∣ x) = f (x ∣ θ). (3.1)

19
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The likelihood represents the probability density of observing data x, given the model
parameters θ. The prior distribution π(θ) is used to quantify our prior knowledge about
the parameters. Bayes’ Theorem provides a methodology to realise posterior distributions
from a combination of our prior beliefs and the likelihood of the data:

π(θ ∣ x) = π(θ)L(θ ∣ x)
∫θ π(θ)L(θ ∣ x)dθ

. (3.2)

As the integral in the denominator is not a function of θ we may consider it a constant of
proportionality. With this we can express the posterior distribution as proportional to the
product of the likelihood and our prior beliefs:

π(θ ∣ x)∝ π(θ) × L(θ ∣ x),
posterior∝ prior × likelihood.

For reasons ofnumerical stability it is commonpractice to target the logarithmof the pos-
terior distribution, rather than posterior itself. With this we may express the log-posterior
as equal to the sum of our log-prior and log-likelihood, plus some additive constant.

3.2 Markov chain Monte Carlo (MCMC)

For themost part the normalising constant (given in the denominator of Equation (3.2)) will
have multiple dimensions, not produce a density function of standard form, and be difficult
to evaluate in all but themost trivial cases. Markov chainMonte Carlo (MCMC) algorithms
represent a class of algorithm which provide methods to sample from the posterior density
π(θ ∣ x), whilst avoiding the evaluation of the troublesome normalising constant.

Unfortunately, although MCMC algorithms circumvent evaluation of the normalising
constant, the consecutive samples realised by MCMC are not independent of one another.
Instead, as the samples are constructed to form a Markov chain, each sample is related to
the samples which occur before it.

3.2.1 Gibbs sampling

The Gibbs sampler, named after the physicist Josiah Willard Gibbs, was first outlined by
S. Geman and D. Geman (1984). This algorithm allows the Bayesian practitioner to sample
from a multivariate density via full conditional distributions of parameters. The Gibbs
algorithm is useful when these conditional densities can be expressed in a standard form
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which is easy to sample form. TheGibbs sampler is a special case of theMetropolis–Hastings
algorithm (introduced in Section 3.2.2), and is outlined in Algorithm 1.

Algorithm 1: Pseudo-code demonstrating n iterations of a Gibbs sampler used to target π(θ ∣ x),
for θ = (θ1, . . . , θd)T .

1 Initialise chain with θ(0).
2 for i = 1 to n do
3 for j = 1 to d do
4 θ(i)j ∼ π(θ(i)j ∣ {θ

(i)
k }k< j, {θ(i−1)

k }k> j, x)
5 end for
6 end for

TheGibbs sampler is a popular MCMC algorithm used in Bayesian inference problems,
partly owing to its ease of implementation. However, Gibbs limits us to posteriors for which
we can express the full conditional distributions of all the parameters of interest. Other
algorithms, such as the more general Metropolis–Hastings algorithm, allow us to target the
posterior without necessitating that the full conditional distributions be known.

3.2.2 Metropolis–Hastings

TheMetropolis–Hastings algorithm is a popular MCMC scheme. The algorithm was intro-
duced by Metropolis, Rosenbluth et al. (1953) in a now classic paper, and was later general-
ised by Hastings (1970). The algorithm works by constructing a Markov chain which has
stationary distribution equivalent to the target distribution (typically the posterior).

The algorithm (described formally in Algorithm 2) begins by initialising a Markov
chain with parameters θ(0). After this the algorithm proposes new parameter values θ⋆
from a proposal distribution q(θ⋆ ∣ θ(0)). The proposed values are accepted with probab-
ility α(θ⋆ ∣ θ(0)). The acceptance probability depends on a ratio of the posterior density
evaluated at the current state, θ(0), and the posterior density evaluated at the proposed state,
θ⋆ (line 4 of Algorithm 2). In this ratio the normalising constants from Equation (3.2)
cancel, and we see that the target distribution need only be known up to a constant of
proportionality—effectively circumventing the need to ever compute the normalising con-
stant. If the proposed state is accepted then the next state of the Markov chain is set to
the proposed value; otherwise, the next state is set to the current value (lines 5–12 in Al-
gorithm 2). The process of proposing and accepting or rejecting proposals continues for a
predefined number of iterations (in Algorithm 2, n iterations), and ideally until the sampler
“forgets” about its starting location, and makes a satisfactory number of draws from the
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Algorithm 2: Pseudo-code demonstrating an implementation of the Metropolis–Hastings al-
gorithm to target π(θ ∣ x) with n iterations.

1 Initialise chain with θ(0)
2 for i = 1 to n do
3 Propose θ⋆ ∼ q(θ(i) ∣ θ(i−1))
4 Construct acceptance probability α(θ⋆ ∣ θ(i−1)) as

α(θ⋆ ∣ θ(i−1)) =min{1,
π(θ⋆) L(θ⋆ ∣ x)

π(θ(i−1)) L(θ(i−1) ∣ x)
q(θ(i−1) ∣ θ⋆)
q(θ⋆ ∣ θ(i−1))}.

5 Draw u ∼ Uniform(0, 1)
6 if u ≤ α(θ⋆ ∣ θ(i−1)) then
7 # Accept proposal
8 θ(i) ← θ⋆
9 else
10 # Reject proposal
11 θ(i) ← θ(i−1)
12 end if
13 end for

posterior (more on this in Section 3.2.4). To allow the chain to “forget” about its starting
position, and to converge to the posterior distribution, it is common to allow some burn-in
period (sometimes called the warm-up period). This period is intended to allow the chain
to converge. Samples drawn during this period are discarded.

Choosing a Proposal Distribution

The practitioner must choose a suitable proposal distribution q(θ⋆ ∣ θ). Ideally the choice
of proposal distribution will give rapid convergence to π(θ ∣ x), and efficiently explore the
support of π(θ ∣ x). However, it is not obvious how to choose a proposal distribution which
will realise these desires.

A special case of Metropolis–Hastings arises when the proposal distribution is symmet-
ric. Symmetric proposals have the property that:

q(θ⋆ ∣ θ) = q(θ ∣ θ⋆).



Markov chain Monte Carlo (MCMC) 23

This symmetry results in a simplification of the acceptance ratio:

α(θ⋆ ∣ θ(i−1)) =min{1,
π(θ⋆)

π(θ(i−1))
L(θ⋆ ∣ x)

L(θ(i−1) ∣ x)}.

The random walk sampler is a popular implementation of Metropolis–Hastings which
makes use of symmetric proposals. Here, proposals are generated as

θ⋆ = θ(i−1) + ω(i−1),

where the ω are sampled as
ω(i−1) ∣Σ ∼ Nd(0, Σ),

and Nd denotes a d-dimensional multivariate normal distribution. The parameter Σ is
called the tuning parameter, and controls how the chain moves around the parameter space.

Mixing describes how efficiently a chain moves around the sample space, and how long
it takes for the chain to converge to the target distribution (see Figure 3.1 for a visualisation
of well-mixing and poorly-mixing chains). Crucially then, the parameter Σ can be used
to control the mixing of chains. So, naturally, we desire to select a Σ which produces well-
behaved chains. Such a tuning parameter should allow rapid convergence to π(θ ∣ x) and
facilitate exploration of the entire support of the target. If the target distribution is Gaussian,
it has been shown that 0.234 is an optimum acceptance probability to try achieve (Roberts
and Rosenthal 2001). In an attempt to tune Σ to obtain an optimum acceptance probability,
a common technique is to choose

Σ = 2.382

d
V̂ar(θ ∣ x),

where V̂ar(θ ∣ x) represents an estimate of the posterior variance made by a sample run.
However, evenwith strategies to try select some optimum innovation structure, random

walk samplers tend to perform poorly in high-dimensional spaces. Consider that as the
dimension of a problem increases, the probability of proposing a point out in the tails of
the target distribution increases. As a result the acceptance probability becomes small and
produces a Markov chain which rarely moves. The acceptance probability can be increased
by choosing a Σ which results in smaller innovations. However, this has the consequence
of producing a Markov chain which explores the sample space slowly, and converges to the
target distribution slowly.

Fortunately, there exist more sophisticated proposal mechanisms which perform better
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than random walk samplers in higher dimensional problems. One such sampler is repres-
ented by Hamiltonian Monte Carlo, which seeks to utilise information about the gradient
of the target distribution to inform innovations. With a problem of dimension d, the com-
putational expense of a random-walk sampler is O(d2), whereas the cost of Hamiltonian
Monte Carlo is roughly O(d5/4) (Creutz 1988).

3.2.3 Hamiltonian Monte Carlo (HMC)

Hamiltonian Monte Carlo, originally Hybrid Monte Carlo, was first introduced by Duane
et al. (1987). In this now landmark paper, the HMC algorithm was detailed and used for
numerical simulation of Lattice Quantum Chromodynamics. Following this, Radford Neal
recognised the potential statistical applications ofHMC, and used it in his work on Bayesian
neural network models (Neal 1995). However, it wasn’t really until Neal’s 2011 review (Neal
2011) that HMC received mainstream attention in statistical computing (Betancourt 2017).

Hamiltonian Monte Carlo is a realisation of the Metropolis–Hastings algorithm. Here,
new parameter values are proposed by computing trajectories of motion according to
Hamiltonian dynamics. With this proposal mechanism it is possible to propose parameter
values which are distant from the current state, but which retain a high probability of accept-
ance. As a result, this proposal mechanism represents a very efficient method of traversing
a parameter space, and circumvents the slow exploration of the parameter space typically
experienced by random walk samplers in higher-dimensions.

Mathematical formulation

Hamiltonian mechanics represents a reformulation of classical mechanics. In Hamiltonian
mechanics a system is described by a d-dimensional position vector, θ, and a d-dimensional
momentum vector, p. This system then evolves through time according to Hamilton’s
equations:

∂pi

∂t
= −∂H

∂θ i
,

∂θ i

∂t
= ∂H

∂pi
,

(3.3)

where i = 1, . . . , d andH(θ , p) is the Hamiltonian. The Hamiltonian is often interpreted
to represent the total energy of a system, which can be considered as the sum of the kinetic
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energy, T , and potential energy, V :

H(θ , p) = T(p) + V(θ). (3.4)

We wish to explore our target distribution (typically the posterior distribution) as if
evolving some Hamiltonian system. This can be achieved if we expand our d-dimensional
parameter space into 2d-dimensional phase space. Our current state can be considered as
the position vector, θ. Introducing auxiliary momentum variables, p, expands our para-
meter space into phase space, as desired.

With our parameter space extended to phase space, we must also expand our target
distribution to phase space. To do so we formulate the canonical distribution, a joint density
function over phase space:

π(θ , p) = π(p ∣ θ) π(θ). (3.5)

The momentum is typically introduced as:

p ∣ θ ∼ Nd(0, M), (3.6)

where M is a positive-definite “mass matrix”, often chosen as the identity matrix or some
scalar multiple of the identity matrix. See that marginalising out the momentum in Equa-
tion (3.5) recovers the target distribution.

To proceed, we consider expressing the canonical distribution as the negative exponent
of a Hamiltonian:

π(θ , p) = exp{−H(θ , p)}. (3.7)

Taking the logarithm of Equation (3.7) and using Equation (3.5) we see

H(θ , p) = − log π(p ∣ θ) − log π(θ). (3.8)

Recall from Equation (3.4) that the total energy in a system can be considered as the sum
of the system’s kinetic energy and potential energy. If we compare Equation (3.4) and
Equation (3.8) we can see that we have constructed a system with kinetic energy given
by the negative logarithm of the momentum density, and potential energy given by the
negative logarithm of the target density, that is:

T(p) = − log π(p ∣ θ) and V(θ) = − log π(θ).
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As a consequence of using information about the gradient of the posterior distribution,
HMC requires that the posterior distribution be differentiable almost everywhere. Because
of this, HMC has the shortcoming that it cannot be used to target distributions with discrete
valued parameters; instead requiring a continuous-parameter valued posterior.

Computer implementation, NUTS & Stan

Now that we have described HMC we are in a position to consider its implementation
in silico. For computer implementation we must first be able to approximate solutions to
Hamilton’s equations. Such approximations can be achieved by discretising time using
some small time step є. Next, the practitioner must also choose the number of steps L
for which to simulate Hamilton’s equations. With this in place, the practitioner typically
implements the leapfrog method to solve Hamilton’s equations (Neal 2011). Algorithm 3
details a realisation of HMC in practice, and demonstrates the leapfrog method to simulate
Hamiltonian mechanics.

As we have seen, in implementing HMC it is left to the practitioner to choose appropri-
ate values for the number of steps L, the step size є, and the mass matrix M. Unfortunately,
making a poor choice for any of these parameters can result in a significant decrease in the
performance of HMC (Hoffman and Gelman 2014). Fortunately, є can be tuned during
the algorithm’s implementation, using ideas from the adaptive MCMC literature. However,
there is no easy way to select a value of L a priori. Typically, a practitioner will have to make
multiple costly tuning runs in order to select an appropriate value of L.

It was with this tuning problem in mind that Hoffman and Gelman (2014) introduced
the No-U-Turn Sampler (NUTS). This algorithm extends HMC and eliminates the need
for the parameter L. Using ideas from stochastic optimisation in numerical analysis, the
authors were able to tune є and M during the implementation of their algorithm. NUTS
performs at least as efficiently as, and often more efficiently than, an equivalent well-tuned
implementation of a standardHMCmethod. Altogether then, NUTS represents an efficient
implementation of a HMC-like algorithm, where the practitioner is left free the obligation
of choosing tuning parameters.

Although NUTS relieves the practitioner the obligation of selecting parameters є and L,
its implementation remains far from trivial. Here enters Stan. Stan, named after Stanislaw
Ulam, one of the original pioneers of Monte Carlo methods (Metropolis and Ulam 1949), is
a probabilistic programming language implemented in C++ (Gelman, Lee and Guo 2015).
Stan requires the user to construct a Stan programme, specifying how to compute the
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Algorithm 3: Pseudo-code demonstrating an implementation ofHamiltonianMonte Carlo to target
π(θ ∣ x) with n iterations. The Leapfrog method is used to approximate solutions to
Hamilton’s equations with discretisation є, and trajectory length L.

1 Initialise chain with θ(0)
2 for i = 1 to n do
3 Draw momentum p(i−1) ∼ Nd(0, M)
4 p⋆ ← p(i−1)
5 θ⋆ ← θ(i−1)
6 # Simulate Hamiltonian with leapfrog method for L steps and discretisation є
7 for j = 1 to L do
8 θ⋆, p⋆ ← Leapfrog(θ⋆, p⋆, є)
9 end for
10 Construct acceptance probability α(θ⋆, p⋆ ∣ θ(i−1), p(i−1)) as

α(θ⋆, p⋆ ∣ θ(i−1), p(i−1)) =min{1, exp[H(θ(i−1), p(i−1)) −H(θ⋆, p⋆)]}
11 Draw u ∼ Uniform(0, 1)
12 if u ≤ α(θ⋆, p⋆ ∣ θ(i−1), p(i−1)) then
13 # Accept proposal
14 θ(i) ← θ⋆
15 else
16 # Reject proposal
17 θ(i) ← θ(i−1)
18 end if
19 end for
20
21 function Leapfrog(θ, p, є)
22 p ← p + є

2
∂V
∂θ

23 θ ← θ + єM−1 p
24 p ← p + є

2
∂V
∂θ

25 return θ, p

posterior density for the targeted model (Stan Development Team 2015). With this, Stan
implements the NUTS algorithm, and returns the user samples drawn from the posterior.

3.2.4 Convergence diagnostics

Having implemented our sampler to make draws from the posterior distribution, we are
now in a position to inspect our output. However, before we can begin to consider assessing
measures such as the predictive performance of our fitted models, we must first assess our
sampler’s output to check for convergence.
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 iteration n

θ

(a)

 iteration n

(b)

Figure 3.1: Example Markov chains produced by a sampler. (a) A chain which looks to be mixing
well, and shows signs of convergence: the chain oscillating in a regular fashion around a
fixed location. The chain displays no obvious irregularities, and successive samples do
not appear highly correlated. (b) A poorly mixing chain. Realisations are observed to
be highly correlated with successive samples. This chain is inefficiently exploring the
sample space, and could benefit from a proposalmechanism allowing larger innovations.

Graphical diagnostics

An informal, yet simple and effective method to assess convergence is to inspect trace plots
of the Markov chains produced by our samplers. When we do so we check for any irregu-
larities in the chains. In Figure 3.1 we visualise Markov chains generated by two samplers
which were implemented for n iterations, targeting some parameter θ. Figure 3.1(a) shows
a chain which is mixing well and looks to have converged to the posterior distribution, as
it moves around some fixed region with constant variance. However, the chain displayed
in Figure 3.1(b) does not look to have converged; consecutive samples look to be strongly
autocorrelated, and the iterations do not appear to be oscillating around any common dis-
tribution.

For amore robust inspection of convergence it is advisable to runmultiple chains initial-
ised at different locations (Figure 3.2). Stan makes the running of multiple chains initialised
at different locations a trivial alteration for the user, and allows the user to run each separate
chain in parallel.

Split-R̂

Split-R̂ represents a popular convergence diagnostic (Gelman, Carlin et al. 2013). This
measure uses information about the within-chain variance and between-chain variance to
quantify how well chains have mixed.
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θ

(a)

 iteration n
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Figure 3.2:The importance of runningmultiple chains. (a) If only a single chain had been inspected,
here we may have concluded that the corresponding sampler had converged. However,
in running multiple chains it is clear that the chains have not converged to a common
distribution. (b) Likewise, viewed separately, the trajectories here do not appear station-
ary, but taken together they do appear to cover a common distribution.

Consider that we have m chains of length n, which target some estimand of interest θ.
We label the draws as θ(i , j) for i = 1, . . . , n; j = 1, . . . , m. The between-chain variance B is
then computed as:

B = n
m − 1

m
∑
j=1
(θ̄(⋅, j) − θ̄(⋅,⋅))2 where θ̄(⋅, j) = 1

n

n
∑
i=1

θ(i , j), θ̄(⋅,⋅) = 1
m

m
∑
j=1

θ̄(⋅, j).

The within-chain variance W is captured in a similar manner:

W = 1
m

m
∑
j=1

s2
j , and s2

j =
1

n − 1

n
∑
i=1
(θ(i , j) − θ̄(⋅, j))2,

The between-chain and within-chain variance can be combined in a weighted sum to es-
timate the marginal posterior variance of the estimand:

V̂ar
+(θ ∣ x) = n − 1

n
W + 1

n
B. (3.9)

The convergence diagnostic split-R̂ is then computed as:

R̂ =
√

V̂ar
+(θ ∣ x)
W

. (3.10)

FromEquation (3.9) observe that as n →∞ the estimatedmarginal posterior variance tends
to W . With this, and Equation (3.10), we see that R̂ → 1 as n → ∞. As such, we look to
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compute R̂ ≈ 1 to indicate that a sampler has converged.

Effective sample size (ESS)

The effective sample size (ESS) is introduced as a notion to assess the “size” of a sample
when the samples are correlated. The idea is that 10,000 autocorrelated samples from a
distribution encode less information than 10,000 independent samples from that same
distribution. The effective sample size is computed as the number of samples drawn, minus
some penalty whose size depends on some measure of autocorrelation.

For a single chain, a common definition of the effective sample size is:

ESS = n
1 + 2∑∞k=1 ρk

, (3.11)

where n is the number of samples and ρk is the autocorrelation at lag k. Although a popular
definition, in practice this measure is often too optimistic when chains haven’t converged
(Gelman, Carlin et al. 2013). The practitionermust also decide when to truncate the infinite
sum which appears in the denominator.

Amore sophisticated estimate of the effective sample size is presented byGelman, Carlin
et al. (2013). In this definition the authors circumvent the infinite sum in the denominator
of Equation (3.11). The inclusion of between-chain variance also makes this measure more
robust.

In estimating ESS, the authors first estimate the sum of the correlations ρ. To compute
the correlations it is first necessary to compute the variogram at each lag t:

Vt =
1

m(n − t)
m
∑
j=1

n
∑

i=t+1
(θ(i , j) − θ(i−t, j))2.

Using the variogram computed at each lag t, along with the estimate of the marginal pos-
terior variance given in Equation (3.9), the correlations can be estimated as:

ρ̂t = 1 − Vt

2V̂ar
+ .

The infinite sum of Equation (3.11) is replaced by a partial sum. Here, correlations are added
until the sum of two successive lags ρ̂2t′ + ρ̂2t′+1 is negative. This gives the estimate:

ESS = mn
1 + 2∑T

t=1 ρ̂t
,
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where T is the first odd positive integer for which ρ̂T+1 + ρ̂T+2 is negative.

3.3 Model selection

Ideally, to test the predictive accuracy of our fittedmodels, we would wait for out-of-sample
data (new data, distinct from that used in our fitting). However, this is often not viable.
One way around this problem is to use leave-one-out cross-validation (LOO-CV). The
idea here is to split the dataset into training data and test data, perform the model fitting
on the training data, and assess fit with the test data. Unfortunately, this method comes
at computational expense; LOO-CV can necessitate performing up to n model fits (where
n is the number of data points). To avoid this expense it is common to assess predictive
accuracy using within-sample data. There exist a variety of information criteria which do
exactly this.

3.3.1 Information criteria

An appealing idea is to assess predictive accuracy using within-sample data. Established
methods to do this include AIC, DIC and WAIC: Akaike, Deviance and Widely Available
Information Criterion, respectively. To compute AIC or DIC it is necessary to evaluate the
posterior density conditioning on a point estimate. Gelman, Carlin et al. (2013) findWAIC
more appealing than AIC and DIC as WAIC has the more desirable property of averaging
over the entire posterior distribution.

However, to use WAIC a practitioner must partition their data into independent (or
close to independent) groups. It has been remarked that this can be very difficult to achieve
for time-series data, or data with a spatial component. Since models of collective beha-
viour have both a time component and a spatial component, WAIC does not seem a viable
information criterion for our use case.

Instead of using WAIC we will opt to use AIC. AIC remains a popular choice of in-
formation criterion as it is easy to compute fromMCMC samples. The Akaike information
criterion penalises model complexity and so is designed to provide a measure which trades-
off between model-fit and model-complexity. AIC is defined as:

AIC = 2pAIC − log(L̂), (3.12)

where pAIC is the number of model parameters, and L̂ is the maximised likelihood.
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Conclusions

TheBayesian paradigm represents a realisation of the scientific process of updating beliefs in
light of observation. With this, Bayesian inference presents itself as a very natural approach
to statistics.

As reflected in Section 2.4, an important aspect of model fitting is capturing uncer-
tainty in estimated parameters. This is particularly prudent when the data used to form
opinion is prone to exhibiting high levels of noise. As Bayesian inference represents a fully-
probabilistic approach to parameter estimation, its application to the study of collective
behaviour—a subject of datasets susceptible to large amounts of noise—seems pragmatic.

The algorithms outlined in Sections 3.2.2 and 3.2.3 provide the Bayesian practitioner the
methodology to make realisations from the posterior distribution. These algorithms will
prove instrumental to this thesis.

The study of collective behaviour is awash with models formed on aprioristic assump-
tion, with little-to-no verification against observation. To compare these models we will
use ideas from the model selection literature; as we seek to trade-off a model’s ability to
describe data, with its complexity.



4
Model development
In this chapter we shall introduce one of the most popular and well-studied agent-based
models in the literature: the Vicsek model. The Vicsek model represents a simple align-
ment model in which agents interact with neighbours within some fixed distance (Vicsek,
Czirók et al. 1995). Despite its simplicity, this model can produce sophisticated dynamics
reminiscent of real flocking events (Ginelli 2016). A phase transition from order to disorder
is observed as the amount of noise in the model is regulated (Vicsek and Zafeiris 2012).

The Vicsek model, like many other agent-based models (ABMs) (Aoki 1982; Huth and
Wissel 1992; Couzin, Krause, James et al. 2002), implements a so-called “zonal” interaction
rule. These rules represent discontinuous interactions. With this, the onset of interaction
between individuals is very sensitive to small perturbations in distances. We consider
continuous interaction rules as providing a biologically-motivated alternative to zonal in-
teraction rules. Such rules ensure interactions are more robust to small perturbations in
distances, but without the penalty of introducing additional model complexity. We believe
that the introduction of continuous interaction rules represents a step towards biological
realism.

4.1 The Vicsek model

TheVicsek model simulates the movements of N individuals over T time steps (Figure 4.1).
Individuals travel with constant speed v, within a square-cell with periodic boundary con-
ditions and side length L. To initialise a simulation agents are allocated a random position

33
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within the cell, and a random direction of motion. From time t to time t + 1 (∆t = 1) agent
i updates its position as:

xi ,t+1 = xi ,t + vi ,t∆t, (4.1)

where the velocity vi ,t is constructed to have speed v and direction of motion θ i ,t+1. Up-
dating θ i ,t to θ i ,t+1 models how agents update their directions of motion in light of their
neighbours’ movements. The ability of individuals to observe and react to the movements
of their neighbours is assumed to be imperfect, and so a noise term, in the form of a ran-
dom directional perturbation, is introduced. In the Vicsek model noise is considered to
be uniformly distributed as U(−η/2, η/2), for some constant 0 < η ≤ 2π. The directional
update of agent i can then be expressed as a realisation from

θ i ,t+1 ∣ ⟨θ⟩i ,t , η ∼ U(⟨θ⟩i ,t − η/2, ⟨θ⟩i ,t + η/2), (4.2)

where ⟨θ⟩i ,t represents the average direction of motion of agent i’s neighbours at time t.
A weighted circular mean, computed using the definition of the atan2 function given in
Equation (A.1), is used to compute ⟨θ⟩i ,t as:

⟨θ⟩i ,t = atan2(
N
∑
j=1

ωi j,t sin θ j,t ,
N
∑
j=1

ωi j,t cos θ j,t). (4.3)

With this, the weighting ωi j,t represents the strength of the interaction between agent i
and agent j at time t. In the Vicsek model agent i interacts with neighbours which are
within distance r ∈ R+ of its current position. This interaction can be implemented with
the weighting rule

ωi j,t =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if di j,t ≤ r,

0 otherwise,
(4.4)

where di j,t is the Euclidean-distance between the positions of agent i and agent j at time t:

di j,t =
√
(x j,t − xi ,t)2 + (y j,t − yi ,t)2.

The interaction rule implemented in the Vicsek model represents a discontinuous inter-
action (see Figure 4.3(a)), as the interaction kernel is very sensitive to small perturbations
in distances. More formally, this discontinuity can be shown by considering the value of
ωi j,t as di j,t approaches r from above and below. As di j,t approaches r from above we real-
ise the limit limd i j ,t→r+ ωi j,t = 0. Conversely, as di j,t approaches r from below we observe
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limd i j ,t→r− ωi j,t = 1. As the weighting tends to different values as the limit of di j,t = r is
approached, we see that there is a discontinuity at di j,t = r. This weighting rule and its
resulting discontinuity are visualised in Figure 4.3(a).

The Vicsek model was inspired by models of ferromagnetism. In these models particles
align spin states with neighbouring particles. Although a discontinuous interaction rule
may be appropriate for such models, it is not clear whether the hard cut-off imposed by
the interaction radius r is appropriate for biological systems. Later (Section 4.2.2), we shall
introduce models implementing continuous interaction rules as a biologically-motivated
alternative.

Vicsek, Czirók et al. (1995) used this model to examine polarisation of simulated
flocks as the magnitude of the noise, ∣η∣, was varied. The polarisation of a flock at time
t—sometimes referred to as its alignment—was quantified by the absolute value of the
normalised velocity of the flock:

va,t =
1

Nv
∣

N
∑
i=1

vi ,t ∣. (4.5)

A flock moving incohesively at time t, with individual members directed randomly, has
polarisation va,t ≈ 0. Conversely, a highly polarised flock in which all members are moving
in the same direction at time t has an alignment va,t ≈ 1. As the amount of noise in a
simulation is increased flocks are observed to transition from an ordered va,t ≈ 1 state to a
disordered va,t ≈ 0 state. For a fixed flock density, smaller flocks are observed to be more
resistant to noise than larger flocks.

4.1.1 Stochasticity

Inspired bymodels of interacting particles, the uniformly distributed noise implemented in
simulations of the Vicsek model is analogous to temperature in a physical system. However,
it is not clear whether this distribution is a reasonable choice for biologically-motivated
systems. In some of the literature authors instead assume that noise is normally distributed
(Couzin, Krause, James et al. 2002). In this case an agent’s directional update typically takes
the form:

θ i ,t+1 ∣ ⟨θ⟩i ,t , σY ∼ N (⟨θ⟩i ,t , σY).

Given that the θ i ,t represent circular quantities, it is not clear whether a choice of nor-
mally distributed noise is appropriate. Consider that the normal distribution has infinite
support, yet θ i ,t ∈ [−π, π) for i = 1, . . . , N and t = 1, . . . , T . The von Mises distribution
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Figure 4.1: Visualisations from a simulation of the Vicsek model. At time t = 1, N = 10 agents
are assigned random positions within a square-cell of side length L = 1. Initially, the
directions of motion of individuals are realised from a U(−π, π) distribution. Between
time steps agents move with speed v = 0.03, and update directions according to Equa-
tion (4.2), with η = π/16. The interaction zone of agent i is illustrated throughout the
simulation by a circle of radius r centred at xi ,t . The positions of neighbours within agent
i’s interaction zone are visualised with a green cross. Individuals which lie outside of
agent i’s interaction zone have their positions denoted by a red cross.

(Equation (A.3)) is a continuous probability distribution on the circle, and so potentially
represents a more appropriate noise structure. However, we observe that when the mag-
nitude of the noise is small, the von Mises distribution can be approximated by a normal
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distribution, as shown in Appendix A.4, and so offers no more flexibility than normally
distributed noise.

The Student’s t-distribution is similar to the normal distribution—symmetric, bell-
shaped, and with infinite support—but has heavier tails. How much extra weight is given
to the tails is controlled by the degrees of freedom parameter ν. As the degrees of free-
dom parameter ν tends to infinity, a Student’s t-distribution with scale σY and location µ,
tends to a normal distribution with corresponding mean and standard deviation. With
this the Student’s t-distribution represents a more flexible noise structure than the normal
distribution.

Throughout this work we will assume that the noise experienced by individuals is dis-
tributed according to some generalised Student’s t-distribution with ν degrees of freedom
and scale σY . In this situation, the directional update of agent i can be expressed:

θ i ,t+1 ∣ ⟨θ⟩i ,t , ν, σY ∼ tν(⟨θ⟩i ,t , σY). (4.6)

Although the Student’s t-distribution represents a more flexible noise structure, it also
comes at the cost of model complexity: with the introduction of the degrees of freedom ν
as an additional model parameter.

4.1.2 Boundary conditions

Recall that simulations of the Vicsek model take place in a square-cell with periodic bound-
ary conditions and side-length L. In this way the density of a cell remains constant through-
out a simulation. However, implementing periodic boundary conditions when we attempt
tomimic real flocking events is clearly inappropriate. Instead, we shall consider simulations
to take place in the unrestricted continuous domain represented by R2. On top of realism,
performing simulations in this unrestricted domain allows more informative visualisations
of the resulting data, as in Figure 4.2. Here we are able to visualise the positions of agents
throughout a simulation in a single graphic. Trajectory plots of simulations taking place in
periodic cells can be difficult to interpret, as it is not easy to visually track individuals as
they cross the periodic boundary.

4.2 Development

Although we shall consider variations on the standard Vicsek model, we shall leave most
aspects of this model unchanged. In the following models, agents shall always update
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Figure 4.2: A trajectory plot representing the movements of N = 45 agents moving through the
unrestricted continuous domain R2. Agents are initially positioned at the locations
represented by the green markers. The model is simulated for T = 200 time steps. The
red markers represent the positions of agents at the end of the simulation. Blue lines
represent the trajectories of motion of individual agents throughout the simulation.

their positions as in Equation (4.1). Similarly, agents will always update their directions
of motion according to Equations (4.3) and (4.6). In fact, all our variations on the stand-
ard Vicsek model shall be made by manipulating the computation of the weighting ωi j,t

(Equation (4.4)). Recall that ωi j,t represents the strength of the interaction between agent i
and agent j at time t. Altering the functional form of ωi j,t allows us to investigate how the
behaviour of a neighbour influences a flock member.

4.2.1 The Null model

In Chapters 5 and 6 we fit a number of different models to data. We then assess the predict-
ive performance of these models. Model performance is assessed by the ability to explain
observation (quantified by the likelihood), with simple models favoured over complexmod-
els. In making such comparisons, it can be useful to have a baseline with which to compare
all subsequent models. It is with this intention which we introduce the Null model.

In the Null model there are no interactions between flock members. All directional
changes are attributed to random noise. The Null model implements directional updates
as in Equation (4.6), with location ⟨θ⟩i ,t computed from Equation (4.3) with weighting
ωi j,t = δi j, where δi j is the Kronecker delta:

δi j =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if i = j

0 otherwise.

With this agents effectively ignore their neighbours and update their directions of motion
as θ i ,t+1 ∣ θ i ,t , ν, σY ∼ tν(θ i ,t , σY).
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Figure 4.3: Visualisations of the weighting rules investigated in this thesis. (a) The interaction im-
plemented in the Vicsek model, parameterised by the interaction radius r, exhibits a
discontinuity (Equation (4.4)). (b) In the power-law weighted model the strength of the
interaction between individuals decays as a power-law relationship with their distance
apart, parameterised by decay rate α (Equation (4.7)). (c) The strength of interaction
between individuals is controlled by aGaussian kernel with standard deviation σX (Equa-
tion (4.8)). (d) A realisation of a topological interaction which allows contributions from
partial neighbours (Equation (4.9)).

4.2.2 Continuous interaction models

We have observed that the interaction rule implemented in the Vicsek model exhibits a
discontinuity (Section 4.1 and Figure 4.3(a)). This discontinuity raises two concerns; (i)
the biological-realism of an interaction rule implementing a hard cut-off; (ii) the ability to
fit such a model to data (recall from Section 3.2.3 that gradient-based inference schemes
cannot be applied to discontinuous target distributions).

These concerns are addressed by considering variations of the Vicsek model in which
continuous interaction rules are implemented. These rules arguably representmore biologic-
ally realistic behaviours. In addition to this, theMCMCalgorithms used in themodel-fitting
process perform better for continuously differentiable target distributions.
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Metric models, of which Vicsek is an example, implement weighting rules which are
explicitly distance-dependent. Here we shall motivate two novel metric interaction rules.
We propose that these represent intuitive and biologically realistic rules.

Power-law interaction

A power-law relationship between two quantities occurs when a relative change in one
quantity results in a proportional change in the other. Power-law relationships are found
frequently in physical and biological systems (Newman 2005), and so represent a natural
choice of interaction rule to investigate.

For the power-law weighted model we assume that the interaction strength between
individuals decays as some power-law with their distance apart:

ωi j,t =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if di j,t = 0,

d−α
i j,t otherwise.

(4.7)

The interaction of the Vicsek model is parameterised by the radius r ∈ R. Here the inter-
action is parameterised by some α ∈ R+. The parameter α controls the rate at which the
interaction strength between individuals decays.

In this model, the closer a neighbour to agent i, the more influence it has over agent i’s
behaviour. Conversely, the further away a neighbour is from the position of agent i, the less
influence it has on agent i’s movements. The rate at which influence decays is controlled by
the value of α. Small values of α represent a more gradual decay of influence with distance,
whereas large values of α correspond to a weighting which decays more rapidly. As α → 0
this model becomes equivalent to Vicsek with r →∞, with each individual interacting with
all flock members with equal strength. This weighting rule is visualised in Figure 4.3(b).

This interaction rule, although continuous for di j,t > 0, still exhibits a discontinuity at
di j,t = 0. However, to the flocking events which we fit this model we observe di j,t ≫ 0
∀i ≠ j, and so this discontinuity does not pose an issue during the model fitting.

Gaussian interaction

Similar to the power-law weighted model, in the Gaussian weighted model the influence
which neighbour j exerts over agent i is inversely proportional to their distance apart; the
further away a neighbour the less influence it exerts. The Gaussian weighted interaction is
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continuous for all di j,t , and can be expressed as:

ωi j,t =
1√

2πσ2
X

e− 1
2(

di j ,t
σX
)2

. (4.8)

This rule is illustrated in Figure 4.3(c).
From Equation (4.8) the parameter σX can be seen to control the length-scale over

which interaction takes place. Small values of σX represent a weighting function which is
very peaked around agent i’s position. As σX → ∞ the weighting approaches a schema
in which all neighbours in the flock are given the same weight. This limiting behaviour is
equivalent to that of Vicsek as r →∞, and the power-law weighted model as α → 0.

Although the Gaussian model implements a similar interaction kernel to that of the
power-law weighted model, there remains differences in their functional forms. Notably,
the power-law interaction represents a convex weighting function, whereas the Gaussian
interaction is a concave weighting (Figure 4.3). The Gaussian model also has some inherent
length scale, expressed by the parameter σX , whereas the power-law weighted interaction
is scale-free.

4.2.3 Topological models

Topological interactions represent a different type of behaviour to metric rules. In topolo-
gical models agents interact with their k ∈ N nearest neighbours, regardless of their distance
apart. This interaction rule was motivated by simulations which suggested that flocks im-
plementing topological rules were more resistant to perturbations, such as those provoked
by predators, than those implementing metric rules (Ballerini et al. 2008; Ginelli and Chaté
2010; Camperi et al. 2012). As such, it was argued that topological interaction rules offer an
evolutionary advantage to flocks over metric interaction rules. It was also posed that the
cognitive limits of individuals puts some upper bound on the number of neighbours which
agents can interact with at any one time (Nieder 2005; Giardina 2008).

Whilst retaining the form of the topological rule, we look to relax the constraint that
agents may only interact with some integer number of closest neighbours. Instead, we will
allow an agent to interact with some k ∈ R+ nearest neighbours. This allows partial neigh-
bours, which may make some lesser contribution to an agent’s behaviour. An additional
benefit of thismore flexible interaction structure is given by the observation that real-valued
parameters are typically easier to infer from data than discrete parameters (recall from Sec-
tion 3.2.3 that continuous valued parameter distributions are necessary for gradient-based
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inference schemes).
For some k ∈ R+ we say that each agent gives weighting 1 to its ⌊k⌋ nearest neighbours,

weighting k− ⌊k⌋ to its ⌈k⌉-th nearest neighbour, and weighting 0 to all other agents, where
⌊⋅⌋ and ⌈⋅⌉ denote the floor and ceiling function respectively. More concisely, we can express
this as the weighting

ωi j,t =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if di j,t ≤min j(di j,t , ⌊k⌋),
k − ⌊k⌋ if di j,t =min j(di j,t , ⌈k⌉),
0 otherwise,

(4.9)

wheremin j(di j,t , k) is the distance to agent i’s k-th closest neighbour at time t. This weight-
ing rule is illustrated in Figure 4.3(d).

4.2.4 Intra-flock variation

In all the model variations considered thus far, there has been no allowance for behavioural
or biological variation within flocks. That is, presented with the same circumstances, all of
our agents would behave identically. This is despite our understanding of the importance
of biological variation in nature.

Within a single flock, we may reasonably expect there to be variation in the age, cognit-
ive ability, social standing and physical attributes of the individuals. Naturally then, it seems
reasonable to suggest that if the attributes of individuals may vary, then their behavioural
responses to a particular set of circumstances may vary too. This is in keeping with the
observation that the orientation abilities of migrating raptors is age dependent (Thorup
et al. 2003).

Models allowing intra-flock variation have been considered before. Particularly im-
pactful was the work of Couzin, Krause, Franks et al. (2005), which simulated flocks of
individuals partitioned into a group of leaders and a group of followers. The two groups
interacted according to different behavioural rules. Followers sought only to amend their
directions in response to the movements of their neighbours. Whereas leaders balanced
their desire to interact with neighbours and their desire to move in a particular direction
(for example, toward a migratory of foraging goal).

Instead of dividing agents into distinct behavioural categories, we permit a range of
behavioural responses by allowing interaction and noise parameters to vary between indi-
viduals. Some agents may be more or less susceptible to noise than others. Consider then
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that agent i experiences noise distributed according to a generalised Students t-distribution
with ν degrees of freedom and scale σYi . Agent i’s directional update is then given as

θ i ,t+1 ∣ ⟨θ⟩i ,t , ν, σYi ∼ tν(⟨θ⟩i ,t , σYi).

In the interest of simplicity we shall maintain a global-flock value for the degrees of
freedom parameter, ν, such that ν = νi . Instead allowing variation in susceptibility of noise
to be expressed through the scale σYi .

In addition to allowing noise parameters to vary within a flock, we also seek to allow
interaction parameters to vary within a flock. In the case of Vicsek, agent i would then
interact with neighbours positioned within distance ri . This corresponds to the weighting
rule:

ωi j,t =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if di j,t ≤ ri ,

0 otherwise.
(4.10)

A similar allowance can be made for the power-law weighted (α ↦ αi), Gaussian weighted
(σX ↦ σX i ) and topological (k ↦ ki) models considered earlier.

Imposing hierarchy

Rather than considering the individual interaction and noise parameters as completely un-
related, we can consider them as being realisations from some population-level distribution.
Hierarchical models allow us to incorporate this extra level of structure into our models.

Hyperparameters are introduced as parameters of the population-level distribution.
Hyperpriors are then specified to reflect the practitioner’s prior beliefs about likely values
of the hyperparameters.

The noise and interaction parameters in our models are all strictly positive, and not
bounded above. As such, we shall assume that the population distributions for these para-
meters follow some gamma distribution. Consider, for example, that the noise parameters
σYi are distributed according to a gamma distribution with shape αY and rate βY . More
concisely, we consider our noise parameters as being distributed according to

σYi ∣ αY , βY ∼ Ga(αY , βY). (4.11)

Our hyperparameters here are αY and βY . The practitioner is then required to specify
hyperpriors: their prior beliefs about likely values for αY and βY . It can be hard to get an
intuitive feel for plausible values for the shape and rate parameters, and sowe shall instead re-
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parameterise our population-level distribution in terms of themean and variance. Consider
that the mean and variance of the gamma distribution can be computed as mY = αY/βY

and vY = αY/β2
Y respectively. From these two relations it can be seen that αY = m2

Y/vY and
βY = mY/vY . Equation (4.11) can then be re-expressed as:

σYi ∣mY , vY ∼ Ga(
m2

Y
vY

,
mY

vY
). (4.12)

This parameterisation allows the practitioner to specify their hyperpriors over the mean
and variance of the distribution, instead of the shape and rate. The hope is that this will
give the practitioner a more intuitive feel for likely values of the hyperparameters.

Population-level distributions are specified in a similar way for the interaction para-
meters of the Vicsek weighting, power-law weighting, Gaussian weighting and topological
models:

ri ∣mr , vr ∼ Ga(
m2

r
vr

,
mr

vr
) (4.13)

αi ∣mα , vα ∼ Ga(
m2

α
vα

,
mα

vα
) (4.14)

σX i ∣mX , vX ∼ Ga(
m2

X
vX

,
mX

vX
) (4.15)

ki ∣mk , vk ∼ Ga(
m2

k
vk

,
mk

vk
) (4.16)

Conclusions

In this chapter we introduced a model developed by Vicsek, Czirók et al. (1995). This
work received much attention in the following literature, and many studies were made of
its simulations and results. We also considered some of the biological shortcomings of
this model, and proposed alterations to address them. Given its relative simplicity, and
widespread study, the Vicsek model represents a sensible starting point for model fitting.

To allow meaningful comparison between predictive performance of variations on the
Vicsek model we introduced a Null model. This model does not simulate an interaction
rule, and so directional changes are introduced entirely by noise. Having questioned the
biological-realism of Vicsek’s discontinuous interaction rule, and considered the practical
implications of fitting such a model, we introduced models implementing continuous in-
teraction rules. We argued that continuous interaction rules make behaviours more robust
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to small changes in distances. A power-law and Gaussian weighted model were introduced
in which interaction strength decays continuously as the distance between individuals in-
creases. A continuous version of a topological rulewas also introduced, allowing individuals
to make partial contributions to an agent’s behaviours.

Variations on these models were considered in which biological and behavioural vari-
ation between individuals is allowed; againmotivatedby considerations of biological-realism.
Population-level variation was modelled by a hierarchical structure, with hyperparameters
introduced to parameterise the population-level distributions. The population level dis-
tributions were reparameterised in terms of the mean and variance, with the intention of
easing prior specification.





5
Simulation studies
The feasibility of performing parameter inference on real data can be assessed by simulation
study. In simulation studies, candidate models are forward simulated for known parameter
values. This simulated data is then used to assess whether the known parameter values can
be captured by inference.

Simulation studies provide good opportunity to assess (and frankly, debug) our im-
plementation of MCMC algorithms constructed to sample realisations from the posterior
distribution. If a simulation study is successful, then the statistical machinery built to per-
form the inference on simulated data can be repurposed to perform inference on real data.
If parameter inference is not possible on simulated data, we know that the same inference
will not be possible on real data either.

5.1 Global models

Global models refer to models in which all agents take the same parameter values. These
are in contrast to hierarchical models, in which all agents take different parameter values.
We shall first seek to perform simulation studies on these global models, as they represent
a simpler inference problem.

Recall from Bayes’ Theorem (Equation (3.2)) that to realise the posterior distribution
we need to combine the likelihood of the data with our prior beliefs. Let us begin by con-
sidering the likelihood of observing a single agent updating its direction, in the presence
of neighbours, from θ i ,t to θ i ,t+1. From Equation (4.6) we have that agent i updates its

47
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direction as a draw from the generalised Students t-distribution with location ⟨θ⟩i ,t , scale
σY and degrees of freedom ν. As such, the likelihood of observing this directional update
can be quantified by the probability density of the generalised Student’s t distribution with
ν degrees of freedom, location ⟨θ⟩i ,t , and scale σY , evaluated at θ i ,t+1:

L(σY , ν, ⟨θ⟩i ,t ∣ θ i ,t+1) =
Γ( ν+1

2 )
Γ( ν

2)
√

πνσY

⎛
⎝

1 + 1
ν
(θ i ,t+1 − ⟨θ⟩i ,t

σY
)

2⎞
⎠

− ν+1
2

,

where Γ is the gamma function. Building on this, let us consider the likelihood of observing
agent i’s directional updates from time t to time t +2. As the noise experienced by an agent
is independent between time steps, we may express this likelihood as the product:

L(σY , ν, ⟨θ⟩i ,t , ⟨θ⟩i ,t+1 ∣ θ i ,t+1, θ i ,t+2) = L(σY , ν, ⟨θ⟩i ,t+1 ∣ θ i ,t+2) × L(σY , ν, ⟨θ⟩i ,t ∣ θ i ,t+1).

In general, we wish to express the likelihood of observing agent i’s directional updates
over any number of times steps. Suppose then that we observe the directions of agent i
from time t = 1 to time t = T . Again, as consecutive realisations from the noise distribution
are independent, we can compute the likelihood as a product

L(σY , ν, ⟨θ⟩i ,1∶T−1 ∣ θ i ,2∶T) =
T−1

∏
t=1

L(σY , ν, ⟨θ⟩i ,t ∣ θ i ,t+1)

=
T−1

∏
t=1

Γ( ν+1
2 )

Γ( ν
2)
√

πνσY

⎛
⎝

1 + 1
ν
(θ i ,t+1 − ⟨θ⟩i ,t

σY
)

2⎞
⎠

− ν+1
2

,

where ⟨θ⟩i ,1∶T−1 is shorthand for ⟨θ⟩i ,1, ⟨θ⟩i ,2, . . . , ⟨θ⟩i ,T−1, and similarly for θ i ,2∶T . Finally,
although we have expressed the likelihood of observing a single agent’s directional changes
over T observations, we really wish to express the likelihood of observing an entire flock’s
directional changes over T observations. Consider observing a flock of N individuals over
T time steps. The likelihood of observing their directional updates can be quantified as:

L(σY , ν, ⟨θ⟩1∶N ,1∶T−1 ∣ θ1∶N ,2∶T) =
N
∏
i=1

T−1

∏
t=1

L(σY , ν, ⟨θ⟩i ,t ∣ θ i ,t+1)

=
N
∏
i=1

T−1

∏
t=1

Γ( ν+1
2 )

Γ( ν
2)
√

πνσY

⎛
⎝

1 + 1
ν
(θ i ,t+1 − ⟨θ⟩i ,t

σY
)

2⎞
⎠

− ν+1
2

.

(5.1)

The likelihood function for all our models takes the same form. What differs between
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Figure 5.1:The trajectories of N = 45 agents simulated over T = 200 time steps according to the
Vicsek model. The initial conditions of the simulation reflect that of a real flocking event,
introduced in the proceeding Chapter 6. The parameters of the model are given by
r = 50, σY = 0.03 and ν = 7. Initial conditions and parameter values were chosen with
the intention to generate a simulated flock similar to that of a real flocking event. At
t = 0 agents are positioned at the locations represented by the green markers. Agents
travel along the blue lines, with the red markers representing their positions at the end
of the simulation.

models is the specification of the weighting function ωi j,t and the corresponding computa-
tion of ⟨θ⟩i ,t .

5.1.1 Vicsek model

We simulate the Vicsek model to realise a flock of N = 45 agents moving for T = 200 time
steps. We desire to work with simulated data which is similar to real data (see, for example,
Figures 6.2 to 6.4). As such, the initial conditions for this simulation are taken from an
observation of a real flocking event, to be introduced in the proceeding chapter: Chapter 6.
Parameters r = 50, σY = 0.03 and ν = 7 are set for this simulation. Figure 5.1 shows the data
generated by this simulation. We seek to assess whether we can recover the true parameter
values from the simulated data.

The likelihood of observing the data can be quantified by Equation (5.1). However, to
target the posterior we also need to specify our prior beliefs about the model parameters.
To allow the data to drive the inference, we shall specify weakly informative priors. Once
realisations from the posterior have been made, we overlay our priors to assess how our
beliefs have updated in light of the data.

Our prior beliefs about likely values for the degrees of freedom parameter ν shall be
reflected by a Ga(2, 0.1) distribution, as popularised by Juárez and Steel (2010). As r and
σY both represent strictly positive measures, we shall use a gamma distribution to quantify
our beliefs about them. These prior beliefs, as detailed in Equation (5.2) and visualised in
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Figure 5.2: Probability density functions representing our prior beliefs about plausible parameter
values of the Vicsek model. These distributions represent weakly-informative priors,
allowing a large range of possible parameter values. These beliefs are expressed math-
ematically in Equation (5.2).

Figure 5.2, represent vague beliefs, allowing a large range of possible parameter values.

r ∼ Ga(50, 1)
σY ∼ Ga(2, 100)

ν ∼ Ga(2, 0.1)
(5.2)

Having specified the likelihood function, and quantified our prior beliefs about the
model parameters, we now have all the ingredients necessary to target the posterior. Un-
fortunately, the discontinuity in the weighting function of the Vicsek model results in a
discontinuous posterior. As Stan (the probabilistic programming language introduced in
Section 3.2.3) requires a continuous-parameter valued posterior that is differentiable almost
everywhere, we are unable to use Stan and instead target the posterior distribution with a
random walk Metropolis–Hastings sampler.

We implement the random walk sampler for 1,100,000 iterations. The first 100,000
iterations of the scheme are discarded to allow the sampler to converge. The chains were
initialised as draws from our prior beliefs. The output of this scheme is summarised in
Table 5.1.

Figure 5.3 shows the chains generated by our inference scheme, having discarded the
initial burn-in period. From these trajectories we see evidence that our sampler has con-
verged: the chains oscillating around fixed locations with some common variance. The
samples generated by these chains are visualised in Figure 5.4. The true parameter values
used to generate the simulated data are shown by vertical green lines. See that in each
posterior the true value is successfully captured by the posterior density, and lies close to
the posterior mode. The posterior densities about the parameters ν and σY look Gaussian,
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however, the posterior distribution over r is non-Gaussian. The non-Gaussian form of the
posterior about r is a product of the discontinuous interaction rule which it represents. Our
prior beliefs are overlain in red and appear flat in comparison to our posteriors, reflecting
that our beliefs have updated considerably in light of the data.

Considering the output of this simulation study, we conclude that we can accurately
infer the true parameter values of data simulated from the Vicsek model. This gives us
confidence in moving forward to fit this model to real data.

5.1.2 Continuous models

We have demonstrated that we can fit the Vicsek model to simulated data. We now seek to
fit the power-lawweighted (Equation (4.7)) andGaussian weighted (Equation (4.8)) models
to simulated data.

As these models implement continuous interaction rules, we may attempt parameter
inference using the Stan programming language. Equation (5.1) can be used to quantify the
likelihood of observing simulated data. To target the posterior we combine this likelihood
with our prior beliefs.

The power-law and Gaussian weighted models represent similar interaction rules. As
with the parameters ν, σY and r, we shall use gamma distributions to quantify our prior
beliefs about α and σX . To ensure that our prior beliefs between these models are consistent,
we shall determine our beliefs by considering plausible values of the weighting ωi j,t . Using
information about di j,t , along with Equations (4.7) and (4.8), we can use our beliefs about
ωi j,t to derive beliefs about α and σX .

To realise our prior beliefs we shall make two probabilistic statements about ωi j,t . These
can be used to determine prior distributions which best reflect these statements. Firstly, we
consider the weighting which agent i gives to its closest neighbour at time t. We believe with
probability 0.025 that this weighting will be less than or equal to 0.25. Similarly, we believe
with probability 0.975 that the weighting which agent i gives to its fifth closest neighbour
will be less than or equal to 0.90. More concisely, we can express these statements as:

P(ωi j,t(min
j
(di j,t , 1)) ≤ 0.25) = 0.025,

P(ωi j,t(min
j
(di j,t , 5)) ≤ 0.90) = 0.975,

(5.3)

where ωi j,t(min j(di j,t , k)) is the influence of agent i’s k-th closest neighbour at time t.
To determine prior beliefs which best reflect these statements, we seek shape and scale



52 Simul ation studies

Parameter mean sd 5% 95% ESS

r 50.02 0.04 49.99 50.11 12 290
σY 0.03 0.00 0.03 0.03 44 560
ν 7.01 0.51 6.31 7.99 47 420

Table 5.1: Summarising the posterior realisations for the parameters inferred in fitting the Vic-
sek model to simulated data. Realisations were made by implementing a random walk
Metropolis–Hastings sampler. Columns report the posterior mean and standard devi-
ation for each parameter. In addition to this, the fifth and ninety-fifth percentiles of our
posteriors are quantified. Finally, the effective sample size (ESS) of each chain is computed
(and rounded to the nearest multiple of ten). The large values of the ESS observed give
reliability to our computed posterior summaries.

 iteration 

.

.

.

.

.

r

 iteration 
.

.

.

.

σ Y

×−

 iteration 







ν

Figure 5.3: Sequences generated by a random-walk Metropolis–Hastings algorithm fitting the Vic-
sek model to simulated data. The initial 100,000 iterations are discarded to allow a
burn-in period. Horizontal green lines represent the true parameter values used to gen-
erate the simulated data. The chains look well-behaved, showing no irregularities, and
suggest that our sampler has converged.

Figure 5.4: Distributions of the posterior samples drawn in fitting the Vicsek model to simulated
data. The green lines represent the known parameter values which we seek to recover.
Prior beliefs are overlain in red. Our posterior densities are seen to accurately capture
the true parameter values. The data can be seen to have been very informative, as our
posterior densities have updated considerably from our prior beliefs.
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Figure 5.5: Probability density functions representing our prior beliefs about α and σX , the inter-
action parameters of the power-law and Gaussian weighted models respectively. These
prior beliefs are given analytically in Equation (5.4). Our prior beliefs about these inter-
action parameters represent equivalent beliefs about the weighting function ωi j,t .

parameters for our gamma priors which minimise:

[P(ωi j,t(min
j
(di j,t , 1)) ≤ 0.25) − 0.025]2 + [P(ωi j,t(min

j
(di j,t , 5)) ≤ 0.90) − 0.975]2.

A simple numerical optimisation routine can be used to minimise this function. With this
we realise prior beliefs:

α ∼ Ga(2, 2)
σX ∼ Ga(5, 5),

(5.4)

which we visualise in Figure 5.5.

Power-law weighted

The initial conditions for our simulated data are taken from an observation of a real flocking
event, the same event used to initialise the simulation in Section 5.1.1. A realistic-looking
flock is generated with parameters α = 1.5, σY = 0.03 and ν = 7 (Equation (4.7)). Figure 5.6
shows the trajectories realised by this simulation. We then seek to recover the known
parameter values by inference.

Stan is used to perform parameter inference on this model. Four independent chains
are initialised as realisations from our prior beliefs. Each chain is then simulated for 10,000
iterations, with the first 5000 iterations discarded to allow a warm-up period. Table 5.2
summarises the posterior draws generated by this run. The tabulated split-R̂ values (Equa-
tion (3.10)) indicate that our sampler has converged for all parameter values.
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Figure 5.6: Simulated data generated by a run of the power-law weighted model with parameter
values α = 1.5, σY = 0.03 and ν = 7. The data represents the trajectories of motion of
N = 45 agents moving for T = 200 frames. Initial conditions for this simulation were
realised from an observation of a real flocking event.

Parameter mean sd 5% 95% ESS R̂

α 1.50 0.02 1.48 1.54 13 130 1.0
σY 0.03 0.00 0.03 0.03 11 400 1.0
ν 7.09 0.50 6.28 7.91 11 580 1.0

Table 5.2: Summarising the posterior realisations made by Stan fitting simulated data to the power-
law weighted model. Columns show the posterior mean and standard deviation of each
model parameter, along with the fifth and ninety-fifth percentiles of our beliefs. The
number of effective samples drawn from the posterior is quantified by the ESS. The
values of R̂ computed indicate that our chains have all converged.

The chains generated by this sampler are shown in Figure 5.7. Each colour represents
an independent chain. Although the four chains were initialised at different locations, they
all converge to the same region.

Histograms of our posterior draws are presented in Figure 5.8. The vertical green lines
in these plots represent the true parameter values. In each case, our posteriors can be seen
to capture the true values. In fact, the true parameter values are seen to be well represented
by the posteriormode. In contrast with the posteriors derived in fitting the Vicsekmodel to
simulated data (Section 5.1.1), the posterior distribution of the interaction parameter (here
α), is Gaussian. Recall that our posterior density about r (Figure 5.4) was non-Gaussian,
owing to the discontinuous weighting rule it represents. Our prior beliefs are overlain in
red. These priors appear flat in comparison to our posteriors, indicating that we have learnt
a lot from the data.
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Figure 5.7: Trajectories of the four independent chains for each parameter inferred in fitting the
power-law weighted model to simulated data. Each independent chain is overlain in a
different colour. Although each chain was initialised at a different starting point, they
can be seen to converge to the same distribution. Chains were simulated for 10,000
iterations, with the first 5000 iterations discarded to allow convergence. The chains
appear well-behaved, showing no irregularities and are seen to oscillate around the true
parameter values, represented by the green horizontal lines.
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Figure 5.8: Histogramplots of our samples drawn from the posteriordistribution in fitting simulated
data to the power-law weighted model. The true parameter values are represented by
the green vertical lines. See that the true value for each parameter is well represented by
the posterior mode. Prior beliefs are overlain in red, and appear flat in comparison to
our posterior densities. This indicates that the observed data was informative, and that
our prior beliefs did not adversely effect our posterior densities.

Gaussian weighted

As with the previous simulation studies, we forward simulate this model with N = 45 agents
and T = 200 time steps, using the same initial state used in Sections 5.1.1 and 5.1.2. Figure 5.9
illustrates the data generated by this simulation. Here, parameters σX = 20, σY = 0.025 and
ν = 7 were used to produce realistic-looking flocking behaviour.

We shall use Stan to perform parameter inference. Four independent sequences are
initialised at draws from our prior beliefs and simulated for 10,000 iterations. The first 5000
iterations are discarded to allow for a warm-up period. Table 5.3 summarises the output
from this run. The reported split-R̂ values indicate that the sequences have converged.

The output visualised in Figures 5.10 and 5.11 shows a well-behaved sampler, capable of
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Figure 5.9: Data generated from a simulation of the Gaussian weighted model with parameters
σX = 20, σY = 0.025 and ν = 7. A total of N = 45 agents were simulated for T = 200
time steps. Initial conditions were taken from an observation of a real flocking event,
with the intention to generate data similar to that of an observed flock.

Parameter mean sd 5% 95% ESS R̂

σX 19.94 0.20 19.60 20.27 13 310 1.0
σY 0.025 0.00 0.024 0.025 11 700 1.0
ν 7.25 0.53 6.41 8.12 11 360 1.0

Table 5.3: Summaries of the posterior densities realised in fitting the Gaussian weighted model to
simulated data. Each row represents a parameter of the Gaussian model. Each column
presents a different summary of our posterior density. The computed R̂ indicate that the
simulated chains converged, and the realised ESS values show a satisfactory number of
draws made from the posterior.

capturing the true parameter values of the Gaussian weighted model from simulated data.

5.1.3 Topological model

In Section 5.1.2 we demonstrated that it is possible to accurately capture the parameters
of the power-law and Gaussian weighted models from simulated data. However, we are
interested in comparing the predictive-performance of metric and topological models with
real data. As such, we need a simulation study on our topological model.

Equations (4.9) and (5.1) allow us to quantify the goodness of fit of the topologicalmodel
with parameters k, σY and ν to observations of a flocking event. To target the posterior
we must combine this likelihood with prior beliefs about the model parameters. We have
no reason to believe that the noise experienced by individuals under a topological regime
would be any different to that experienced under a metric regime. As such, our prior beliefs
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Figure 5.10: Visualising the Markov chains generated fitting the Gaussian weighted model to simu-
lated data. Each colour chain represents an independent chain. Although the chains
are initialised as different draws from our priors, they all converge to the same com-
mon distribution. The chains look well-behaved; they show no irregularities, and are
observed to oscillate around the true parameter values with constant variance.
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Figure 5.11: Draws realised by Stan in fitting the Gaussian weighted model to simulated data. The
true values (green vertical lines) are well represented by the posterior mode. Our pos-
teriors appear much more peaked than our priors (overlain in red), suggesting that our
choice of priors had little influence over the realised posteriors.

about the noise parameters σY and ν shall remain the same as in themetric case: as expressed
in Equation (5.2).

We are then left to quantify our prior beliefs about k, the number of nearest neighbours
which an agent interacts with. Previous work suggested that agents interact with their
six to seven nearest neighbours (Ballerini et al. 2008). However, this work investigated
three-dimensional flocking events of flying birds. As we are focusing on data restricted to a
two-dimensional plane—flocking sheep (Chapter 6) and swimming birds (Section 7.2)—we
believe that the number of nearest neighbours will be lower than the six to seven found
previously. We find that a Ga(6, 1/2) distribution captures a wide range of plausible values
for k (Figure 5.12).

The topological model is forward simulated to generate data for the simulation study.
Forty-five agents are simulated for two-hundred time steps. Each agent interacts with its
closest k = 3 nearest neighbours. Noise was generated from a generalised Student’s t-
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Figure 5.12: Prior beliefs about the number of nearest neighbours k which an agent interacts with
in a 2-dimensional environment, expressed by a Ga(6, 1/2) distribution. Our prior
beliefs here are in part informed by the work of Ballerini et al. (2008).

Figure 5.13: Data used for our simulation study of the topological model. Each agent was simulated
to interact with its nearest k = 3 neighbours, and was subject to noise generated from a
generalised Student’s t-distribution with location µ = 0, scale σY = 0.03 and degrees of
freedom ν = 7.

distribution with scale σY = 0.03 and degrees of freedom ν = 7. The trajectories generated
by this simulation are illustrated in Figure 5.13, and resemble that of a real flocking event.

Stan was used to make realisations from the posterior distribution. Four independent
chains were initialised at draws from our prior beliefs. Each chain was simulated for 10,000
iterations. The initial 2500 iterations were discarded to allow the chains to converge. The
sequences generated by this sampler are shown in Figure 5.14. Corresponding posteriors
are plotted in Figure 5.15. Our prior beliefs about the model parameters are overlain in
red, and appear flat in comparison to our posteriors: indicating that we have learnt a lot in
observing the data. Summaries of this output are tabulated in Table 5.4. Considering the
output of this scheme we see that we can accurately recover the true parameter values of
data simulated from the topological model.
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Parameter mean sd 5% 95% ESS R̂

k 2.98 0.02 2.94 3.02 16 710 1.0
σY 0.03 0.0 0.03 0.03 13 240 1.0
ν 7.04 0.50 6.20 7.81 13 355 1.0

Table 5.4: Tabulating summaries of the posterior draws made in fitting the topological model to
simulated data. Posterior samples were generated by Stan’s implementation of the No-
U-Turn-Sampler. Each row represents a parameter of the topological model. The values
of ESS and R̂ computed show that the chains converged and realised a large number of
posterior samples.
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Figure 5.14:Markov chains generated in inferring the parameters of the topological model from
simulated data. Stan was used to simulate four independent chains constructed to target
the posterior distribution. These chains were initialised at different initial conditions.
The resulting chains are seen to converge to the same commondistribution, andoscillate
regularly around the true parameter values.
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Figure 5.15: Histogram plots of our posterior densities having fitted the topological model to simu-
lated data. Our posteriors are seen to have updated considerably from our prior beliefs
(overlain in red), and accurately capture the true values (green vertical lines).
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5.2 Hierarchical models

Hierarchicalmodels represent amore demanding inference problem owing to the increased
number of model parameters to infer. The simulation studies performed in Section 5.1 re-
quired three parameters to be inferred per model: one interaction parameter and two noise
parameters (scale and degrees of freedom). In the hierarchical models introduced in Sec-
tion 4.2.4 each agent has its own interaction parameter, as well as its own scale parameter for
the noise distribution. For simplicity, the agents share a global degrees of freedomparameter
for the noise distribution. To fit a hierarchical model to data describing the movements of
N individuals we are then required to infer 2N + 1 parameters and 4 hyperparameters.

Introducing this extra level of structure into our model needs to be accounted for in
the likelihood function. The likelihood function for our differing hierarchical models takes
the same general form. For illustration purposes, here we shall consider the likelihood of
data generated from a hierarchical Gaussian weighted model. The likelihood function for
the remaining hierarchical models can be derived in a similar fashion.

Suppose we simulate the movements of i = 1, . . . , N individuals over t = 1, . . . , T time
steps, according to a hierarchical Gaussian weighted model. Here, agent i has interaction
parameter σX i and noise-scale parameter σYi . The interaction parameters are distributed
according to a population-level distribution, here taking the form of a gamma distribution
withmeanmX and variance vX (Equation (4.15)). Noise-scale parameters σYi are distributed
in a similar manner (Equation (4.12)). The likelihood of observing this flock’s directional
updates, along with the parameters σX i and σYi can be expressed as the product:

L(σX , σY , ν, ⟨θ⟩1∶N ,1∶T−1 ∣ θ1∶N ,2∶T , mX , vX , mY , vY)
= L(σY , ν, ⟨θ⟩1∶N ,1∶T−1 ∣ θ1∶N ,2∶T) × L(mX , vX ∣ σX) × L(mY , vY ∣ σY).

(5.5)

Taking the form of the likelihood from Equation (5.1) and considering the hierarchy im-
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posed in Equations (4.12) and (4.15), we may write down the likelihood in full as:

L(σX , σY , ν, ⟨θ⟩1∶N ,1∶T−1 ∣ θ1∶N ,2∶T , mX , vX , mY , vY)

=
N
∏
i=1

T−1

∏
t=1

Γ( ν+1
2 )

Γ( ν
2)
√

πνσY

⎛
⎝

1 + 1
ν
(θ i ,t+1 − ⟨θ⟩i ,t

σY
)

2⎞
⎠

− ν+1
2

×
N
∏
i=1

(mX/vX)m2
X/vX

Γ(m2
X/vX)

σ m2
X/vX−1

X i
exp( − mX

vX
σX i)

×
N
∏
i=1

(mY/vY)m2
Y /vY

Γ(m2
Y/vY)

σ m2
Y /vY−1

Yi
exp( − mY

vY
σYi).

(5.6)

5.2.1 Continuous models

In Section 5.1.2 we used Stan to perform parameter inference on data simulated from con-
tinuous models, and a random-walk Metropolis–Hastings algorithm to perform inference
on the Vicsek model. Similarly, here we shall use Stan to perform parameter inference on
data simulated from our hierarchical continuous models. However, owing to the increase
in dimensionality of the problem, performing inference on the hierarchical Vicsek model
with a Metropolis–Hastings algorithm (necessary because of the discontinuous posterior)
was found to be computationally infeasible, and is omitted from this study.

Power-law weighted

Figure 5.16 shows data simulated from the hierarchical power-law weighted model. The
interaction parameters of the 45 simulated agents are drawn from a gamma distribution
with mean mα = 1.2 and variance vα = 0.02. The noise-scale parameters of the agents are
drawn from a gamma distribution with mean mY = 0.04 and variance vY = 0.001. As such,
mα, vα, mY and vY represent the hyperparameters of this model.

Vague hyperpriors are chosen to represent our prior beliefs about the hyperparameters.
These, along with the likelihood function, are combined with Bayes’ Theorem to target
the posterior distribution. We use Stan’s NUTS algorithm to simulate four independent
chains to target the posterior. Each chain is initialised as a draw from our prior beliefs and
simulated for 5000 iterations. The initial 2500 iterations are discarded to allow the chains
to converge from their initial conditions toward the posterior.

Our posterior realisations of the hyperparameters are visualised in Figure 5.17. Each
coloured histogram overlain represents the realisations generated by an independent chain.
Our hyperpriors are overlain in red. See that in all cases our hyperpriors appear flat in
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Figure 5.16: Forward simulation of the hierarchical power-law weighted model. The movements of
N = 45 agents are simulated forT = 200 time steps. For realism, the initial positions and
directions ofmotions of the agents are taken from an observation of a real flocking event.
The interaction parameters αi are drawn from a gamma distribution with mean mα =
1.2 and variance vα = 0.02. Similarly, the noise-scale parameters σYi are realisations
from a gamma distribution with mean mY = 0.04 and variance vY = 0.001.

comparison to our posteriors. This reflects having updated our beliefs considerably in light
of the data. In this plot vertical green lines representpopulation-level summary statistics (the
true values of the hyperparameters), and the vertical black lines represent the corresponding
sample-level summary statistics. For example, consider that although the αi were drawn
from a distribution with population mean mα = 1.20 (vertical green line), their sample
mean was α ≈ 1.18 (vertical black line). We see that all the hyperparameters are well-
captured by our posterior distributions, and conclude that they can be accurately inferred
from simulated data.

Posterior densities about the N interaction and N noise-scale parameters are summar-
ised in Figure 5.18. Here, each boxplot represents a posterior density. As is convention, box
boundaries represent the 25th and 75th percentiles of the posterior. Whiskers represent the
median ±1.5×IQR. See that in all but one case (α6), the true parameter values lie within our
posteriors. We observe that the σYi ’s are generally well represented by the posterior median.
It appears that smaller noise-scale parameters can be captured with less uncertainty than
larger noise-scale parameters. Although forty-four of the forty-five interaction parameters
are captured by our posteriors, the interaction parameters are not recovered with as much
accuracy as the noise-scale parameters. However, we still see that our posteriors generally
capture the interaction parameters.

Although not included here for brevity, tabulating split-R̂ for every parameter reveals
that all chains converged with R̂ = 1.00. Computing the effective sample size for each
parameter showed that the worst performing chain still realised approximately 10,000 ef-
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Figure 5.17: Histogram plots representing our posterior densities about the hyperparameters of the
hierarchical power-law weighted model fitted to simulated data. Vertical green lines
represent the true values of the hyperparameters (the population means and variances
of the parameters). Vertical black lines represent sample means and variances of the
parameters. Hyperpriors are overlain in red.

fective samples from the posterior. This gives confidence that our posteriors have been well
realised.

Considering the posterior samples generated by our Stan model, we have demonstrated
that we can accurately recover the hyperparameters and parameters of data simulated from
a hierarchical power-law weighted model.

Gaussian weighted

In a similar manner to the simulation study just performed on the hierarchical power-law
weighted model, we now seek to perform a simulation study on the hierarchical Gaussian
weighted model. As before, our model is implemented to simulate the movements of 45
agents over 200 observations. Here, the interaction parameters σX i are drawn randomly
from a gamma distribution with mean mX = 25 and variance vX = 1. The forty-five σX i ’s
sampled for this simulation have mean σX ≈ 25.2 and variance Var(σX) ≈ 1.1. The traject-
ories realised by this simulation are illustrated in Figure 5.19.
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Figure 5.18: Boxplots summarising our posteriors about the interaction and noise-scale parameters
of the hierarchical power-law weightedmodel fitted to simulated data. As is convention,
boxes show the 25th, 50th (the median) and 75th percentiles of the posterior. Whiskers
represent the median ±1.5 × IQR.

Figure 5.19: Data generated by a simulation of the hierarchical Gaussian weighted model. The
interaction parameters σX i are sampled from a gamma distribution withmean mX = 25
and variance vX = 1. Similarly, the noise-scale parameters are drawn from a gamma
distribution with mean mY = 0.04 and variance vY = 0.001.

We use the Stan modelling language to codify Equation (5.5) and express our vague
prior beliefs about the hyperparameters of the model. Four independent chains are again
simulated for 5000 iterations, with the first 2500 iterations discarded to allow a warm up
period.

Our posterior realisations about the hyperparameters are visualised in Figure 5.20. The
four independent chains simulated are seen to have converged to a common distribution.
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Figure 5.20: Realisations from the posterior distribution of the hierarchical Gaussian weighted
model. Vertical green lines show the true values of the hyperparameters. Vertical
black lines show the sample summary statistics of the model parameters. Hyperpriors
are overlain in red.

The true values of the hyperparameters (vertical green lines) lie well within our posteriors,
and lie close to the posterior mode.

Figure 5.21 is constructed to provide a convenient summary of our posterior distribu-
tions about the 2 × N = 90 model parameters used for this simulation. The true parameter
values are shown by green markers, and posterior medians are represented by yellow mark-
ers. All the true parameter values are seen to lie within our posteriors, indicating that they
can be captured by parameter inference. Our posteriors about the interaction parameters
of the agents overlap considerably. This indicates that the parameters drawn for simulation
represent very similar interaction weightings. The noise-scale parameters, on the other
hand, are captured with much less uncertainty and overlap.

5.2.2 Topological model

Having satisfied ourselves that we can fit continuous hierarchical models to simulated data,
we now turn our attention to our hierarchical topological model. The data simulated for
this study is shown by the trajectories of Figure 5.22. The trajectories generated for this
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Figure 5.21: Boxplots summarising the posterior densities about the interaction parameters and the
noise-scale parameters used to forward simulate the hierarchical Gaussian weighted
model. Each boxplot illustrates the posterior median, lower and upper quartiles, and
the posterior median ±1.5 × IQR.

Figure 5.22: An illustration of the trajectories realised by a forward simulation of the hierarchical
topological model. In this model agent i interacts with its ki nearest neighbours, and
experiences noise distributed according to a Student’s t-distribution with scale σYi

and degrees of freedom ν. Interaction and noise scale parameters are drawn from
population level distributions, parameterised by the hyperparameters mk = 1, vk = 2,
mY = 0.4 and vY = 0.001.

simulation bear a strong resemblance to that of a real flocking event (see, eg. Figure 6.2).

Interaction and noise-scale parameters were drawn from population-level distributions.
The interaction parameters k were sampled from a Gamma distribution with mean mk = 4
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and variance vk = 2. These hyperparameters are represented in Figure 5.23 by vertical green
lines. The sampled interaction parameters had mean k ≈ 4.15, and variance Var(k) ≈ 1.25.
These values are illustrated in Figure 5.23 with vertical black lines. In a similar manner,
the noise-scale parameters are drawn from a Gamma distribution with hyperparameters
mY = 0.4 and vY = 0.001, which resulted in parameters σY with sample mean σY ≈ 0.035
and sample variance Var(σY) ≈ 0.001.

The posterior samples realised by Stan’s implementation of the No-U-Turn-Sampler are
shown in Figure 5.23. These histograms represent the posterior realisations made by four
independent Markov chains, each simulated for 5000 iterations and initialised at different
locations. Sample and population level summary statistics of the parameters are shown to
be captured well by our posterior densities, indicating that we can successfully recover the
hyperparameters of simulated data by inference. Our posteriors are much more peaked
than our hyperpriors, suggesting that our choice of hyperprior had little influence over our
posteriors, as was intended.

Having seen that we can successfully recover the hyperparameters of the hierarchical
topologicalmodel, we now turn our attention to the parameters of this model. The posterior
densities of the remaining 2N parameters are summarised in Figure 5.24. From this plot we
see that we are able to capture all 90 of the model parameters in our posterior densities. The
true values of the parameters are seen to lie close to the posterior median in the majority
of cases.

Conclusions

Having shown that we can accurately capture the true parameter values of data simulated
from the hierarchical topological model, we have now demonstrated that we can perform
successful simulation studies on all our continuous hierarchical models. In Section 5.1 we
showed that we can capture the true parameter values of data simulated from our global
models (both and continuous and discontinuous).

The inference schemes constructed to perform these inferences can now be repurposed
with minimal-to-no-modification for use with data of real flocking events. We can be
confident in the accuracy and our implementation of these schemes. With this, if we find
our implementations unable to fit real data to our models, we can be confident that this is
due to a discrepancy between model and data, rather than an error in our implementation.
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Figure 5.23: Histogram plots showing the posterior samples drawn in fitting the hierarchical to-
pological model to simulated data. Samples were drawn by Stan’s implementation of
the NUTS algorithm. Our hyperpriors (overlain in red) appear flat in comparison to
our posteriors: indicating that our beliefs have updated considerably having observed
the simulated data. The true values of the hyperparameters are shown by the vertical
green lines, and the corresponding sample level summary statistics are shown by black
vertical lines.
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Figure 5.24: Summarising our posteriors about the interaction and noise-scale parameters of the
N = 45 agents simulated according to the hierarchical topological model. Box bound-
aries represent the upper and lower quartiles of our beliefs, and the whiskers show the
posterior median ±1.5 × IQR.





6
Case study I: flocking sheep
In Chapter 5 we showed that it is possible to infer the parameters of a number of agent-based
models from simulated data. Performing simulation studies before attempting inference
on real data is advisable as it allows an opportunity to troubleshoot and assess the accuracy
of our inference schemes. The schemes constructed to perform inference on simulated data
can now be reused with little-to-no-alteration to perform inference on real data. With the
confidence instilled by the success of our simulation studies, if we find our schemes unable
to fit a model to real data, we can be confident that this is because of a discrepancy between
the model and data, rather than an error in our fitting process or our implementation of it.

This chapter shall focus on data of flocking sheep, unseen before in the literature. Aerial
footage of flocking sheep was recorded by a commercially available drone. The position of
each individual sheep was extracted from the captured video footage using custom tracking
software. In total, three flocking sequences were extracted and analysed. The flocking
events were captured and their data extracted by Hayley Moore (thesis in preparation).
Global models considered in Section 5.1 will be fit to these sequences. The resulting fits
will be assessed for validity and ranked for performance by Akaike Information Criteria
(Section 3.3.1).

6.1 Flo cking data

Aerial footage of flocking sheep was captured with a commercially available DJI Phantom
3 drone equipped with a built in high-definition camera, representing a frame resolution

71
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of 4000 × 3000 pixels. This video footage was recorded at a rate of 24 frames per second.
In total, three distinct flocking events were captured and analysed. Each flocking event
involved the same flock of 45 sheep.

The recorded flocking events took place in large open fields: a natural environment
with which the sheep were already familiar. Flocks were recorded in familiar terrain in an
attempt to observe the most natural flocking events, and to minimise the effect which an
unfamiliar environment may have on the flock dynamics. In some cases the flocking events
were initiated by the movements of a quad bike, but were then left to develop naturally and
unprompted. Events generally took place away from hard boundaries, such as fences and
trees, but the influence of these objects from a distance cannot be ruled-out.

Custom tracking software was constructed to determine the position of each sheep in
every video frame. To correct for the movement of the drone due to external influences,
such as wind, the resulting frames were transformed with respect to some reference points.
Reference points are stationary and identifiable features present in all of the captured frames.
Example reference points include field boundaries, fence posts and trees.

Having corrected for extraneous drone-movement, the captured frames were then
thresholded to separate the pixels representing sheep from their surrounding environment.
Kalman filtering (Kalman 1960) and the Hungarian algorithm (Kuhn 1955) were then used
to track the positions of individual sheep between frames. Having linked the positions of
sheep between frames, the trajectories ofmotion of every individual could be reconstructed.
Figure 6.1 shows the positions of sheep in a single video frame, overlain are the positions
of these sheep in previous frames.

Having realised the trajectories of each individual it is then a simple process to determine
the velocity, speed and direction of motion of each individual. Using Equation (4.5) it is
possible to compute the mean polarisation of the flocks in each sequence. The attributes of
each flocking event are summarised in Table 6.1. We see that sequences are broadly similar:
representing highly-polarised flocks moving at similar speeds.

Figures 6.2 to 6.4 show the trajectories of motion of each individual in the three recor-
ded flocking events. The positions of sheep in the first frame of the captured footage are
represented by green markers. The sheep then travel along the blue lines, with their last
recorded position illustrated by the red markers.

The data realised by the drone captured footage resembles the data used in the simula-
tion studies of Chapter 5. In fact, the first observed frame of sequence 1 was used to seed
these forward simulations.
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Figure 6.1: A visualisation of data realised from a single flocking event. The faint vertical line seen
passing through the image shows a boundary fence which was located here previously.
The position of each sheep in every video frame was extracted using custom tracking
software. Coloured lines represent the positions of sheep in previous frames. Each
flocking event tracked the movements of 45 sheep over close to 200 frames. A single
flocking sequence then represents approximately 45×200 = 9000 observations. Footage
was recorded at a rate of 24 frames per second, and so each sequence represents 10
seconds of raw footage.

Sequence Frames Sheep Mean speed (px s−1) Mean alignment

1 192 45 4.20 0.99
2 183 45 3.26 0.98
3 194 45 4.25 0.97

Table 6.1: Summaries of the three flocking sequences analysed in this chapter. Each sequence in-
volved a flock of the same 45 sheep, recorded over around 200 frames. As the data was
recorded at a rate of 24 frames per second, each sequence represents around 10 seconds of
raw footage. The observed flocks were all highly polarised and moved at similar speeds.

6.2 Model fit ting

We now proceed to fit the global agent-based models introduced in Chapter 4 to the three
flocking events realised. The performance of these fitted models is then assessed by the
Akaike Information Criteria. Model adequacy is inspected with standardised residual plots
and posterior predictive checking.
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Figure 6.2:The trajectories of sheep reconstructed from video footage of sequence 1. The realised
flock shows 45 individuals moving cohesively over 192 frames. The observations in the
first frame of this sequence were used to seed the forward simulations in Chapter 5.

x

y

Figure 6.3: A trajectory plot of the flock realised in sequence 2. These trajectories correspond to
those shown in the drone footage of Figure 6.1.

x

y

Figure 6.4: Illustrating the movement of the flock in sequence 3. Although this flock appears as
cohesive as the events in sequences 1 and 2, this flock is also seen to go through greater
directional changes.
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6.2.1 Sequence 1

Sequence 1 represents the most cohesive flocking event of the captured sequences. We shall
use the inference schemes constructed in Chapter 5 to fit our candidate models to this data.
With the models fitted, we can then assess the performance of the model fits, and rank the
candidate models by their predictive performance.

Posterior beliefs

Our posterior beliefs about the parameters of the candidate models fitted to sequence 1
are shown in Figure 6.5. The same vague prior beliefs that were specified in Chapter 5
were reused here. These prior beliefs are plotted in red on top of our posteriors. For all
the inferred parameters our prior beliefs appear flat in comparison to our posteriors. This
shows that we were able to learn a lot from the data, and that our prior beliefs did not have
a strong impact on our posterior realisations.

Stan’s No-U-Turn-Sampler was used to draw samples from the posterior distributions
of the Null, power-law weighted, Gaussian weighted and topological models. To perform
the model fittings we initialised four independent Markov chains at draws from our prior
beliefs. Chains were simulated for 10,000 iterations, with the first 5000 iterations discarded
to allow convergence. The samples drawn by each independent chain are represented by the
different coloured histograms of Figure 6.5. The overlain histograms show that the chains
all converged to the same common distribution. Computing values of R̂ also indicate that
our chains have converged.

The parameters of the Vicsek model were inferred by implementing a random walk
Metropolis–Hastings sampler. This algorithm was simulated for 106 iterations, with the
first half of the chains discarded to allow a burn-in period. Our posterior distributions
about the interaction radius r, shown in Figure 6.5(b), show a very strong negative skew.
As our posterior density rapidly drops to zero as r → 3.25, we conclude that at r ≈ 3.25 an
agent suddenly includes the influence of a neighbour which the model finds incompatible.
This behaviour is a product of the discontinuity of Vicsek’s weighting rule.

The interaction parameters inferred from sequence 1 all represent weak interactions.
This finding is consistentwith the observation thatweak alignment interactions are sufficient
to maintain groups which are already highly polarised (Jhawar et al. 2020). The small
values inferred for the parameter ν, representing the degrees of freedom of the Student’s
t-distribution, suggests evidence of non-normality of the noise. This result is significant as
thus far the assumption of normally distributed noise has been a mainstay of agent-based
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modelling.
Although we have shown that our candidate models can be fit to sequence 1, this does

not say anything about their adequacy or goodness-of-fit. To assess goodness-of-fit we shall
inspect residual plots and make posterior predictive checks.

Standardised residuals

Assessing plots of residuals can be used as an informal method to assess modelling assump-
tions. To compare model and residual, we first rearrange Equation (4.6) to see that:

(θ i ,t+1 − ⟨θ⟩i ,t)/σY ∣ ν ∼ tν , (6.1)

where tν is the standardised Student’s t-distribution with ν degrees of freedom. To realise
a model’s residuals we compute ⟨θ⟩i ,t for i = 1, . . . , N and t = 1, . . . , T for every posterior
sample made by our inference scheme. The residuals can then be computed as θ i ,t+1 −
⟨θ⟩i ,t and standardised by dividing by the posterior mean of the scale parameter σY . The
residuals are compared with the model graphically by overlaying a standardised Student’s
t-distribution with the degrees of freedom parameter taken from our posterior mean.

Figure 6.6 shows the standardised residuals of our fitted models. We see that all the
models look to give a good fit to the data. It may come as a surprise that the Null model
looks to perform so well. However, this is again a product of the observation that our flock
was already highly polarised, and that only weak alignment interactions are necessary to
maintain a flock which is already cohesive.

Although plots of standardised residuals provide a useful informal measure of model
fit, it can be useful to use more formal methods such as information criteria to quantify fit.

Model rankings

Akaike Information Criteria (AIC) favours models which better explain the given data,
expressed through a larger likelihood, but penalises model complexity—quantified as the
number of model parameters. The Akaike weight of a model can be computed from its AIC
value. Typically a model’s Akaike weight is interpreted as the probability that the model
will make the best predictions on new data, conditional on the set of models considered.

In Table 6.2 we show the value of AIC computed for each model fit. Recall that smaller
values of AIC indicate a better estimate of predictive performance. Table 6.2 shows the
ranking of each model fit. We see that the topological model was ranked as the best per-
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Figure 6.5: Histogram plots show the posterior samples realised in fitting candidate models to the
data of sequence 1. Our priors beliefs are overlain in red, and in all cases appear flat in
comparison to our posterior beliefs; this indicates that the observed data has been very
informative.
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Figure 6.6: Standardised residuals of the models fitted to sequence 1. The residuals are standardised
by dividing by the posterior mean of the scale parameter σY . A Student’s t-distribution
with ν degrees of freedom taken from our posterior mean is overlain in green. We see
that models all look to provide a good fit to the data.

Model AIC rank pAIC dAIC weight

Topological -49 031 1 3 0.0 0.98
Power-law -49 023 2 3 7.4 0.02
Gaussian -48 985 3 3 46.3 0.00
Null -48 943 4 2 87.7 0.00
Vicsek -48 941 5 3 89.7 0.00

Table 6.2: Tabulated values of AIC and the corresponding Akaike weights (displayed to 2 decimal
places) of each model fitted to sequence 1. Models are ranked from 1–5, where 1 is the
best fit and 5 is the worst.

forming model, followed by the power-law and Gaussian weighted models. The Null and
Vicsek models are ranked as the worst performing. If we were to only compare maximised
likelihoods we would rank the Null and Vicsek models the same. However, AIC penalises
for model complexity, and so having an extra model parameter without being better at
describing the data: the Vicsek model is ranked below the Null model.
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Posterior predictive checks

Forward simulating candidate models with parameters drawn from our posterior beliefs
provides an informal method to assess howwell a model can reproduce realistic behaviours.
Here we forward simulate each candidate model one thousand times. To initialise each
simulation we randomly draw model parameters from our posterior density. We simulate
the movement of 45 sheep, initially positioned and directed as in the first frame of the fitted
sequence, for 192 time steps. We compute the alignment of the flocks at each time step.

Figure 6.7 shows the alignment of the simulated flocks. The top panel shows the align-
ment of two sets of randomly selected simulations. We see that all the models do a reason-
able job of capturing the observed flock alignment for around the first 25 time steps. After
this, the observed flock experiences a fluctuation in alignment over a time scale of around
100 frames. The candidate models do not appear capable of producing flocks with such
long-time fluctuations in alignment. However, this should not come as a particular surprise
as these models only predict direction of motion one step ahead. The disparity between
observed alignment and simulated alignment may suggest the presence of interactions or
external influences not accounted for by our models, or of a longer range dependence on
previous directions.

The bottom panel of Figure 6.7 shows the median alignment of simulated flocks as
a function of time. The coloured bands around the medians show the upper and lower
quartiles of the realised alignments. We see that the topological and Gaussian models,
favoured by AIC, produce the most consistently cohesive flocks.

6.2.2 Sequence 2

This sequence details the movements of our flock of 45 sheep over 183 frames. The recorded
flock is again very coherent and highly polarised.

Posterior beliefs

Parameter inference is again performed by a combination of the Metropolis–Hastings and
NUTS algorithms. The posterior realisations made by these samplers are shown in Fig-
ure 6.8. Having overlain our prior densities in red, we can see that our beliefs have changed
considerably in light of the data.

The inferred parameters are similar to those realised from sequence 1; representing weak
interactions between individuals and giving evidence of agents experiencing non-normally
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Figure 6.7:The alignment of flocks forward simulated with parameters drawn from our posterior
densities about model fits to sequence 1. Simulations were initialised as in the first
frame of the observed data, and repeated one thousand times. The top panels show two
randomly selected sets of forward simulations. The bottom panel shows the median
alignment across all simulations. Bands represent the upper and lower quartiles over
the one thousand repetitions.

distributed noise. Similar noise-scale and degrees of freedom parameters are inferred for
every model fitted to sequence 2.

Our posterior densities about the interaction radius of the Vicsek model again shows a
strongly skewed distribution. It is this sudden drop in posterior density which makes the
NUTS algorithm ineffective for this problem.

Standardised residuals

We use plots of standardised residuals to compare observation andmodel prediction. From
Equation (6.1) we expect the standardised difference between prediction and observation
to follow a Student’s t-distribution with ν degrees of freedom. Our observations are the
directions of motion θ i ,t+1, and our predictions are given by the interaction ⟨θ⟩i ,t computed
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Figure 6.8: Posterior realisations of the model parameters inferred in fitting candidate models to
sequence 2. Posterior samples of the parameters of the Vicsek model were drawn by the
implementation of a Metropolis–Hastings sampler. The remaining models were fitted
with the implementation of Stan’s NUTS algorithm.
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Figure 6.9: Standardised residuals of models fitted to sequence 2. The density overlain in green
represents a Student’s t-distribution with ν degrees of freedom, where ν is taken as the
posterior mean from the corresponding model fit. The distributions of residuals show
a mean slightly below zero, suggesting the presence of behaviours not accounted for in
our models.

at each posterior sample.

The standardised residuals computed from each model fit are shown in Figure 6.9. The
standardised residuals look to follow a generalised Student’s t-distribution with scale 1, and
location slightly below zero. The non-zero mean of the residuals may suggest the presence
of additional interactions such as attraction or repulsion, which are not implemented in our
models. The non-zero mean could also be explained by the influence of external factors,
such as field boundaries, which are not accounted for by our models.

The residual plots for each model fit look very similar. This is again a product of the
observation that our flocks are already highly aligned, experience only small fluctuations
in directional change, and only require weak alignment interactions to maintain cohesion.

Model rankings

The standardised residuals of each model fit shown in Figure 6.9 look very similar. Recall
that model predictions are made at every iteration of our inference schemes. For samples
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Model AIC rank pAIC dAIC weight

Power-law -43 495 1 3 0.0 0.49
Topological -43 494 2 3 0.2 0.44
Gaussian -43 490 3 3 4.5 0.05
Null -43 488 4 2 6.9 0.02
Vicsek -43 486 5 3 8.9 0.01

Table 6.3: Ranking the models fitted to sequence 2 by their predictive performance, estimated by
AIC. The power-law model is ranked as the best performing model, followed closely by
the topological model.

drawn using Stan we have 4 independent Markov chains, simulated for 5000 post-warm-
up iterations, giving a total of 20,000 iterations. Sequence 2 contains 45 × 183 data points.
Given the initial directions of individuals, we are then tasked with predicting 45 × 182 =
8190 data points. Making our predictions at every iteration, we make a total of 20, 000 ×
8190 predictions per model. These predictions are then used to form our standardised
residuals. As such, it can be very difficult to visually ascertain small improvements inmodel
performance from plots of residuals alone. Because of this, more quantitative measures
such as AIC can be useful in distinguishing between models.

Computed AIC values and their corresponding model ranks are tabulated in Table 6.3.
The computed Akaike weights are not as conclusive as they were with sequence 1; here the
power-law and topological models are awarded similar Akaike weights. The similarity in
weights computed for these models suggests that in application there may be very little
practical distinction between them, or that their differences are so minute it can be difficult
to tell them apart.

Below the ranking of the power-law weighted and topological models, the ranking
follows the same order as was seen in sequence 1. Again we see that the Vicsek model was
not able to explain any more of the data than the Null model. But as AIC favours simplicity,
given that both models have the same value of the maximised likelihood function, we see
the Vicsek model ranked below the Null model.

Posterior predictive checks

To assess the ability of our fitted models to produce realistic looking behaviours, we for-
ward simulate the candidate models using parameters drawn from our posterior densities.
Simulations are initialised as in the first frame of sequence 2, and repeated one thousand
times. For each repetition new parameter values are drawn from the posterior.
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Figure 6.10: Flock alignment as a function of time for forward simulated candidate models. Models
are initialised from the first frame of sequence 2, with model parameters drawn from
our posteriors. Each candidate model is forward simulated one thousand times, with
new model parameters drawn for each simulation. The top panel shows two randomly
selected sets of forward simulations. The lower panel shows the median alignment of
simulations as a function of time, with the bands around the median representing the
25th and 75th percentiles

Figure 6.10 shows alignment as a function of time for the resulting flocks. The top panel
of Figure 6.10 shows two sets of randomly selected flocking instances. Here the models
look to provide a good prediction of flock alignment for around the first 75 time steps. The
bottom panel of Figure 6.10 shows the median flock alignment as a function of time. The
bands around the coloured lines represent the 25th and 75th percentiles of the observed
alignments. The most cohesive flocks were generated by the topological and power-law
models—again corresponding to the models favoured by AIC.

6.2.3 Sequence 3

Theflocking event captured in sequence 3 ismuchmore dynamic than the events captured in
sequences 1 and 2: going through amuch larger directional change than the other sequences.
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In addition to this, the flock of sequence 3 is not as densely packed as the flocks of sequences
1 and 2, as seen in Figure 6.4.

Posterior beliefs

Parameter values are inferred from sequence 3 by sampling. The Null, power-law weighted,
Gaussian weighted and topological models are fit using Stan, whereas the Vicsekmodel is fit
with aMetropolis–Hastings algorithm. The samples drawn from the posterior are shown in
Figure 6.11. Computing values of R̂ shows that all our samplers converged. Corresponding
values of the effective sample size show a large number of samples were realised from the
posterior.

The inferred parameters broadly align with those inferred from sequences 1 and 2: with
the inferred interaction parameters representing weak interactions. However, the inferred
degrees of freedom parameters are smaller than those inferred for sequences 1 and 2, reveal-
ing a noise distribution with more weight in its tails.

Standardised residuals

Residuals are computed as the difference between observation andmodel prediction. Resid-
uals are standardisedbydividing by the posteriormean of the inferrednoise-scale parameter
σY . Histogram plots of the standardised residuals are shown in Figure 6.12; a Student’s t-
distribution with ν degrees of freedom, taken from our posterior mean, is overlain in green.
From Figure 6.12 we see a poor fit of model to data: although the residuals do look to follow
a Student’s t-distribution they do so with a location less than zero. This suggests that we
were unable to capture the directional changes that the flock went through, and suggests the
presence of behaviours not included in our model. Such behaviours could be agent-agent
interactions such as attraction or repulsion, or could be interactions between agents and
their external environment.

Model rankings

Although plots of the standardised residuals show that none of the considered models
provide a particularly good fit to data, it can still be informative to consider if any of
the models outperformed the others. Table 6.4 shows the AIC values and corresponding
Akaike weights computed for each model fit. From this we see that the power-law weighted
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Figure 6.11: Posterior beliefs about the model parameters fitted to sequence 3. The Null, power-
law weighted, Gaussian weighted and topological models were fit with Stan’s NUTS
algorithm. The Vicsek model was fit with a Metropolis–Hastings algorithm. Prior
beliefs are overlain in red, and appear flat in comparison to our posteriors.
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Figure 6.12: Standardised residuals from sequence 3 show a poor fit of model to data. Although the
residuals do look to follow a Student’s t-distribution, they do sowith a location less than
zero. This suggests the presence of behaviours not captured by our models. Missing
behaviours could be interactions between sheep and their external environment, or
missing sheep-sheep interactions such as repulsion or attraction behaviours.

Model AIC rank pAIC dAIC weight

Power-law -52 242 1 3 0.0 1.00
Gaussian -52 222 2 3 20.3 0.00
Topological -52 169 3 3 73.6 0.00
Null -52 037 4 2 205.8 0.00
Vicsek -52 035 5 3 207.8 0.00

Table 6.4: Estimating predictive performance of models fitted to sequence 3 using Akaike Informa-
tion Criteria. Models are ranked from best performing (1) to worst performing (5). The
corresponding Akaike weight for each model is computed.

provided the best fit to the data. Consistent with sequences 1 and 2 we see the Null and
Vicsek models as the worst performing candidate models.
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Figure 6.13: Alignment as a function of time for forward simulations of sequence 3. Model paramet-
ers were chosen as random draws from our posterior beliefs. Each candidate model
was forward simulated one thousand times, with new parameter values drawn for each
simulation. The top panel shows two sets of randomly selected forward simulations.
The lower panel shows the median alignment of flocks as a function of time, the bands
around the median represent the upper and lower quartiles of the alignment.

Posterior predictive checks

Forward simulating fitted models provides an opportunity to assess a model’s ability to
reproduce realistic behaviours. Here we assess the ability of our models to replicate the
change in alignment over time of our data. Although our residual plots show that we were
unable to explain the directional changes of sequence 3, Figure 6.13 shows that out models
do a reasonable job of mimicking the alignment of sequence 3 over time. The bottom panel
of Figure 6.13 shows that the power-law weighted model produces the most consistently
cohesive flocks, which was also the model favoured by AIC.
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Conclusions

We have evidenced that we are able to fit a number of competing agent-based models to
real flocking events, working in a Bayesian framework. We demonstrated a number of
different ways to assess model fit, and estimate predictive performance. Although here
we only focused on a small subset of possible candidate models, our approach could be
extended to fit and compare any number of models.

Our inferred posteriors consistently showed that only weak interaction parameters are
necessary to maintain flocking events which are already highly-polarised. The small values
of the degrees of freedom parameters inferred gave evidence of non-normally distributed
noise.

Assessing standardised residual plots showed that themodels generally provided a good
fit to the data. However, for one of our sequences we observed that our models were unable
to capture all the behaviours of the flock. From this we concluded that additional interaction
rules, such as attraction or repulsion behaviours, or interactions with the environment,
needed to be included.

In ranking our model fits we observe that the power-law weighted and topological mod-
els perform the best. That no single model comes out on top suggests that there may be
aspects to the data which neither model is able to capture, or that the practical distinction
between these models is so small that it is difficult to tell them apart. Though our analysis
does not favour a single model as providing the best fit, models implementing continuous
interaction rules consistently outrank those with discontinuous rules. We saw that the Vic-
sek model is no better at describing the data than the Null model, even with the additional
complexity of an extra model parameter. Penalised for complexity, AIC consistently ranked
the Vicsek model below the Null model; making the Vicsek model the worst performing
candidate model.





7
Missing data
Collecting data of flocking events is a demanding process (see, for example, Cavagna et al.
(2008) and Lukeman, Li and Edelstein-Keshet (2010)). Along with the technical challenges
posed by data collection, flocking events are inherently unpredictable, and so it is not
possible to know when and where a flocking event may occur next. In this way there can
become a frustrating “right-place-right-time” component to data collection.

Typically, recording equipment is set up in a fixed location where the scientist believes
a flocking event may occur (Lukeman, Li and Edelstein-Keshet 2010). Stationary recording
equipment results in a fixed field of vision in which data may be captured. Unfortunately,
this stationary set-up can result in recording incomplete flocking events. This may happen
when flock members stray outside the field of vision during a recording event. As the
recording equipment is fixed in location the field of vision cannot be adjusted to reinclude
those who move out-of-frame.

The flock members which move out of frame cannot be ignored during analysis: al-
though we may not observe their movements, they may still be influencing the behaviour
of the flock, and so must be accounted for. A simple but undesirable solution is presented
by the temptation to discard every frame in which any individual is out of view. This “solu-
tion” has the potential to drastically reduce the amount of data available for analysis. As
capturing flocking events can be such an involved and time-consuming endeavour, it seems
remiss to discard observations and the information they contain.

In this chapter we will consider how we can handle flocking events which contain miss-
ing observations. The movements of missing agents will not be ignored, nor will data be
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discarded. Instead, we will work in a Bayesian framework to adjust our posterior densities
about model parameters to account for unobserved behaviours. We will see that this can
be achieved by integrating over all the possible trajectories of missing agents. We show
that this approach gives more accurate results than the naive approach of discarding data,
before demonstrating the developed methodology on real observation.

7.1 Types of missingness

When we consider flocking events with missing observations, it is important to consider
at which point during the sequence a given agent went missing. This is because how we
account for the missingness will depend on at which point during the sequence the agent
went missing.

Although there are many different circumstances which can result in an agent leaving
our visual field, here we shall inspect the two cases which we consider as the most likely to
occur. These two cases arise when agents are out of frame at the beginning of a recording
event, or when agents are out of frame at the end of a recording event.

We shall integrate over the possible missing observations using a Metropolis–Hastings
scheme. A proposalmechanism for generating pathsmissing at the beginning of a sequence
is outlined. Proposed paths can then be accepted or rejected using results from Chapter 5.
We will then show that we can generate paths missing at the end of a sequence by imple-
menting a Gibbs sampler (Algorithm 1); sampling from our full conditional distributions
to realise a distribution of possible paths.

7.1.1 Missing in the beginning of a sequence

We say that data is missing at the beginning of a flocking event if the observer began re-
cording the sequence before all agents had entered the frame. When we consider this case
we assume that all the flock members do eventually enter the visual field, and so the total
number of individuals in the flock is known.

We imitate this scenario by forward simulating the Vicsek model and imposing a fixed
field of vision on top of the resulting data. We chose to forward simulate 25 agents for 40
time steps. At time t = 1 agents were directed and positioned randomly within a square-cell
of side length L = 1. Agents experienced noise generated from a generalised Student’s t-
distribution with ν = 7 degrees of freedom and scale σY = 0.075. Each individual interacted
with neighbours positioned within distance r = 0.5, and moved with speed v = 0.03.
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Figure 7.1: Illustrating our forward simulation of the Vicsek model and the data considered missing.
(a) Simulated trajectories. The rectangle overlain in black represents our imitation of a
fixed field of vision: analogous to that of recording equipment used in the field. Agents
travel from green marker to red marker, with their ID (i) shown at their start and end
points. Data points outside of the rectangular region are classified as missing, and are
shown by red trajectories. (b) Summarising the missing and observed data points of our
simulation. A blue gridpoint at location (t, i) indicates that agent i was within our visual
field at time t. A red gridpoint at location (t, i) indicates that agent i was outside our
visual field at time t.

The resulting simulated data is illustrated in Figure 7.1(a). The rectangle overlain in black
represents a fixed field of vision: analogous to the fixed visual field generated by recording
equipment in the field. The movements of agents outside this fixed area are classified as
missing and are represented by the red trajectories. Agentsmove from the positions denoted
by the green markers, to the positions represented by the red makers. The ID number of
each agent, i, is shown at the beginning and end of its trajectory. It can be seen that some
agents were outside our visual field at the beginning of the simulation.

Figure 7.1(b) shows a schematic representing which data points of our simulation were
considered observed and which data points were classified as missing. A blue gridpoint in
location (t, i) tells us that agent i was observed at time t. Conversely, a redmaker at location
(t, i) indicates that agent i was missing at time t. From this schematic we can see that a
number of agents were classified as missing at time t = 1: the beginning of the simulation.

We may use Equation (5.1) to quantify the likelihood of observing a flock’s movements.
However, to compute the likelihood we must observe the positions and directions of each
individual in every frame. With this, to evaluate the likelihood of a flock with missing
observations we must propose candidate values for the missing data points. To do so we
shall work backwards from our first observation of each missing agent.

We propose missing directions of motion backwards in time from our first observation
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of each missing agent. A symmetric proposal distribution is used to propose a missing
direction θ i ,t−1 as:

θ⋆i ,t−1 ∣ θ i ,t , ν, σY ∼ tν(θ i ,t , σY), (7.1)

where tν denotes a generalised Student’s t-distribution with ν degrees of freedom. An
alternative proposal scheme could be formulated using the interaction term ⟨θ⟩i ,t as:

θ⋆i ,t−1 ∣ ⟨θ⟩i ,t , ν, σY ∼ tν(⟨θ⟩i ,t , σY). (7.2)

However, as this proposal necessitates the computation of ⟨θ⟩i ,t , it generates candidate val-
ues of θ⋆i ,t−1 at greater computational expense than Equation (7.1). For highly aligned flocks
we expect Equations (7.1) and (7.2) to propose similar candidate values, with Equation (7.1)
doing so at a lesser computational cost. It is for this reason that we shall use the proposal
distribution of Equation (7.1).

The proposed directions are used to reconstruct the trajectories which they represent.
This is achieved by rearranging Equation (4.1) such that:

xi ,t = xi ,t+1 − vi ,t∆t. (7.3)

Recall from Section 4.1 that ∆t = 1 and that vi ,t is constructed to have direction θ i ,t+1

and speed v. Given θ i ,t+1, we may compute vi ,t = (cos θ i ,t+1, sin θ i ,t+1)Tv. With this, and
reindexing t ↦ t − 1, we may rewrite Equation (7.3) as:

xi ,t−1 = xi ,t − (cos θ i ,t , sin θ i ,t)Tv∆t. (7.4)

Having proposed candidate values for the missing directions of motions with Equa-
tion (7.1), we can use Equation (7.4) to compute the proposed paths which these directions
correspond to. As these proposed paths represent missing data, if any of the proposed
positions lie within our frame of vision, then the proposals must be rejected.

Having values for the positions and directions of motion of every individual at every
time step, we may use Equation (5.1) to quantify the likelihood of these paths, given some
model parameters.

To infer the Vicsek model’s parameters from our simulated data we shall implement a
random walk Metropolis–Hastings sampler (Algorithm 2). At each iteration of the sampler
we shall propose model parameters and candidate values for the missing observations.
These proposed data points are then accepted or rejected along with the proposed model
parameters, with probability given by the acceptance probability. With this, each missing
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observation introduces an additional dimension to the posterior distribution, and so in-
creases complexity. As a result, as the amount of missing data increases, the computational
demand of the problem increases.

We simulate our random-walk sampler for 100,000 iterations, and thin the resulting out-
put by a factor of 10. The output is thinned to reduce the autocorrelation between successive
samples, and to decrease the memory overhead of the computation. We assess convergence
by inspecting trace plots of the simulated chains. Figure 7.2 visualises the chains targeting
the directions of motion θ6,1, θ6,2, θ6,3 and θ6,4 which were classified as missing. From this
plot we see well-behaved chains oscillating regularly around a fixed location, evidencing
convergence. The true values of the missing observations are indicated by the horizontal
green lines. See that the true values are all captured within the oscillations of our chains, but
that the further back in time we work the greater the oscillations become. The magnitude
of the oscillations increase as we extrapolate further backwards in time and become more
uncertain about the possible movements of missing agents. Figure 7.4 shows the missing
paths sampled at four randomly chosen iterations of our scheme, and demonstrates that
our scheme is capable of generating realistic trajectories in place of missing observations.

Figure 7.3 shows chains targeting the missing x co-ordinates of agent 6 over the first
four frames. The chains targeting the x co-ordinates are related to the chains targeting the
missing directions through Equation (7.4). Figure 7.3 gives further evidence that our chains
have converged, and that the further back in time we extrapolate the less certain we become
about an agent’s whereabouts.

As with the hierarchical models considered in Section 5.2, we now have a posterior
distribution with a large number of dimensions, and so assessing and presenting every
marginal posterior density becomes impractical. Instead, we summarise the output of our
chains targeting the missing observations in Figure 7.5. Each panel of Figure 7.5 shows
box and whisker plots summarising our posterior samples. The yellow markers show the
posterior median, the inner-extent of the whiskers show the upper and lower quartiles, and
the outer-extent of the whiskers show the posterior median ±1.5 × IQR.

The left-most panel of Figure 7.5 summarises the posterior densities representing our
beliefs about the missing directions of motion. The green markers represent true values.
See that as we extrapolate further back in time our posterior variance increases, as we would
expect. The x and y co-ordinates corresponding to these directions are shown in the central
and right-most panels. As the between-agent variance in positions is much greater than
our posterior variance, to compare all the inferred positions in one plot we first subtract
the realised samples from the true values. This results in box and whisker plots centered
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Figure 7.2: Chains targeting directions of motion missing at the beginning of a simulation. Each
trajectory was simulated for 100,000 iterations. To decrease the autocorrelation between
samples and reduce memory overhead the output was thinned by a factor of 10. The true
values of the missing directions are shown by the horizontal green lines. The true values
are captured within our posterior densities.

approximately around zero (shown by the green markers): indicating that our posterior
densities accurately captured the true values. Again, we see that our posterior variance
about the inferred positions increases the further back in time we extrapolate.

Wehave shown thatwe can capturemissing observations by implementing aMetropolis–
Hastings sampler. Now that we have this, we wish to inspect how having missing obser-
vations has influenced our parameter uncertainty. We also wish to investigate how our
approach to missing data compares to the more naive approach of discarding frames which
don’t capture every individual. To make this comparison we re-perform parameter infer-
ence on the simulated data, in the first instance increasing our field of vision to capture
all agents, and in the second instance discarding frames where any individual is missing.
We expect that the posterior variance about the model parameters with the missingness
accounted for should be greater than or equal to the posterior variance had there been no
missingness. Similarly, had we discarded the frames with missingness, we would expect
a posterior variance greater than or equal to the posterior variance with the missingness
integrated over.
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Figure 7.3: Trajectories of the x co-ordinates of agents corresponding to the directions of motion
seen in Figure 7.2. Sampled directions of motion are related to sampled co-ordinates
through Equation (7.4). The true values of themissing co-ordinates are overlain in green.

Figure 7.4: Visualising completed paths at four randomly chosen iterations of our inference scheme.
The plots show plausible trajectories were constructed by our scheme.
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Figure 7.5: Summarising the posterior samples targeting the missing directions of motion (left), x
co-ordinates (centre), and y co-ordinates (right). True values are shown by the green
markers, and posterior medians are shown by the yellow markers. The box and whisker
plots show the upper and lower quartiles as well as the median ±1.5 × IQR. Realisations
of the missing positions are subtracted from the corresponding true values to make
comparison easier.

Figure 7.6 compares posterior densities of the model parameters under three different
regimes: the flocking event without any missingness (blue), the event with the missingness
integrated out (red), and the event with the missingness discarded (purple). From this plot
we see that integrating over the missing observations provides very similar posterior dens-
ities to if we had observed all the data. We see that our approach to handling missingness
gives smaller posterior variance than the naive approach of discarding observations, indic-
ating the efficacy of our approach. As the computational demand of the problem increases
as more data goes missing, effort should still be made by the scientist to minimise the total
amount of missingness incurred during data collection.

7.1.2 Missing in the end of a sequence

We say that data is missing at the end of a flocking event if some individuals leave the frame
of vision before the recording event was completed. When we consider this case we assume
that agents which leave the frame do not later re-enter it. We imitate this situation by
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Figure 7.6: Comparing posterior densities about the Vicsek model parameters had all the data been
observed (blue); with the missingness integrated out (red), and when discarding frames
which any individual is missing from (purple). The posterior densities are shown by
kernel density estimates of the posterior samples.
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Figure 7.7: Individuals missing at the end of a sequence. (a) Twenty-five agents are simulated for
forty frames according to the rules of the Vicsek model. Agents travel from the positions
denoted by the green markers to those denoted by the red markers. The ID of each agent
is shown at its start and end point. A fixed field of vision is emulated by the rectangle
overlain in black. Anymovements which occur outside this area are classified as missing;
shown by trajectories transitioning from blue to red. (b) A representation of which data
points of our simulation were observed and which were classified as missing. A blue tile
at location (t, i) indicates that agent i was within our field of vision at time t. Conversely,
a red tile at location (t, i) indicates that agent i was outside our field of vision—that is,
missing—at time t.

simulating the movements of 25 individuals over 40 frames, according to the specifications
of the Vicsek model (here with parameters r = 0.45, σY = 0.07 and ν = 7), and overlaying a
fixed field of vision. The resulting data is visualised in Figure 7.7.

To fit one of ourmodels to this datawemust be able to evaluate the likelihoodas specified
in Equation (5.1). This likelihood involves a product over i = 1, . . . , N and t = 1, . . . , T ,
and so we must have data to represent these observations. As some agents are out of frame
at the end of the sequence, we do not have all the observations necessary to evaluate the
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likelihood.

We can propose trajectories for the missing agents by forward simulating the model
from each agent’s last observed position (Equations (4.1) and (4.6)). Doing so we write
down the full conditional distribution for missing directions at the end of a sequence as:

θ⋆i ,t+1 ∣ ⟨θ⟩i ,t , ν, σY ∼ tν(⟨θ⟩i ,t , σY) (7.5)

Realising paths missing at the end of a sequence is now achieved with a Gibbs step (Al-
gorithm 1). With this there is no accept / reject step for the sampled trajectories, and so new
missing paths are evaluated at every iteration of our sampler. As the sampled trajectories
represent missing observations, any samples that are generated within our field of vision
are discarded and new trajectories are sampled instead. This Gibbs step is embedded within
a Metropolis–Hastings sampler which works to infer the model parameters of the Vicsek
model.

Figure 7.8 shows the chains targeting the missing directions of motion of agent i = 6.
These trajectories show evidence of convergence and are seen to capture the true values of
the missing data (green). These directions are related to the y-component of the missing
positions (shown in Figure 7.9) via Equation (4.1), and again capture the true values of the
missing data. Figure 7.10 goes to demonstrate that the paths generated by our scheme are
plausible: visualising four randomly chosen flock configurations considered by our sampler.

In Figures 7.8 and 7.9 we only inspect a small amount of the total missingness targeted
by our inference. Figure 7.11 summarises the posterior densities about all the missing obser-
vations of our simulated data. We see that in all cases the true values (green) are captured
within our posterior densities (blue). From the central and rightmost panels of Figure 7.11
we see that posterior variance (uncertainty) increases the further into the future we extra-
polate.

Figure 7.11 shows that our approach to missingness is able to capture data missing at
the end of a recording event. We now wish to inspect how this approach has effected our
posterior densities. To do so we perform parameter inference on the simulated data as if
all the data had been contained within our field of vision. In addition to this we perform
the same inference but discarding all the frames in which any agent was out of view. The
model parameters inferred under these three scenarios are compared in Figure 7.12. We see
that integrating out the missingness reveals results similar to as if we had observed all the
data, and that the naive approach of discarding missingness resulted in a larger posterior
variance.
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Figure 7.8: Trace plots targeting directions of motion missing at the end of the simulated flocking
event. The chains give strong evidence of convergence and show that the true values of
the missing directions (green) are captured within the posterior densities.

The Gibbs sampler explores the sample space more efficiently than the Metropolis–
Hastings algorithm, an artefact of Gibbs’ lack of an accept / reject step. As a result we
can handle data missing at the end of a sequence with less computational expense than
data missing at the beginning of a sequence. We conclude that although all effort should be
made by the scientist to avoid recording sequences with any missing observations, where
possible care should be taken to bias the occurrence of data missing at the end of a sequence
over data missing at the beginning of a sequence.

7.1.3 Missing in the beginning and end of a sequence

Having demonstrated that we can handle sequences with observations missing at the begin-
ning of an event and sequences with observations missing at the end of an event, we now
seek to verify that we can handle sequences with data missing at the beginning and end.
Having considered these two cases separately we now consider them jointly.

To handle sequences with data missing at the beginning and end, it is sufficient to use
the Gibbs step as outlined in Section 7.1.2 to sample pathsmissing at the end of the sequence,
and the Metropolis–Hastings algorithm as in Section 7.1.1 to propose paths missing at the
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Figure 7.9: Trajectories targeting the y-component of the missing positions of agent i = 6. The
chains show evidence of convergence: oscillating around a fixed point with constant
variance. The true values (green) are captured within the oscillations of the chains.

Figure 7.10: Visualising, at four randomly chosen iterations, missing trajectories that were com-
pleted by our inference scheme. The sampled paths look plausible.
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Figure 7.11: Summarising the posterior densities of themissing directions (left panel), x co-ordinates
(central panel), and y co-ordinates (right panel). For comparative ease the samples of
the missing positions are subtracted from the true missing positions. The true values
being targeted are shown by the green markers, and all lie within the box and whisker
plots representing our posterior densities. As we extrapolate further into the future
we see that our posterior variance increases, as our uncertainty about the values of the
missing observations increase.
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Figure 7.12: Kernel density estimates of themodel parameters inferred from simulateddata. Theblue
kernels represent posterior densities when the field of vision was widened to include
all movements; the red kernels show posterior densities when the missingness was
integrated out, and the purple kernels represent the posterior samples when all the
frames containing missing data were discarded.
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Figure 7.13: Simulated data with observations missing at the beginning and end of the sequence.
(a) Showing the trajectories of the simulated agents. The rectangle overlain in black
shows the simulated field of vision. As agents move from the green markers to the red
markers we see that there are agents missing at the beginning and end of the sequence.
(b) Schematic illustrating which data points were observed and which were classified as
missing; a blue marker represents an observed data point, and a red marker represents
a missing data point.

beginning of the sequence.
The data simulated for this study are shown in Figure 7.13. See that the simulated data

shows data points missing at the beginning and end of the event. This is again seen in
7.13(b), which illustrates which data points were observed and which classified as missing.

Wefit theVicsekmodel to this simulateddata using our implementation of theMetropolis–
Hastings algorithm. Parameter inference is performed on (i) data with no missingness, (ii)
data with missingness integrated out and (iii) data with missingness discarded. The pos-
terior densities realised under these three regimes are compared in Figure 7.14. From this
figure we see that integrating over the missingness resulted in posterior densities most
similar to the densities with all the data observed.

7.2 Case Study II : foraging scoters

In Section 7.1 we discussed how the use of fixed-location recording equipment during data
acquisition can result in individuals moving out-of-frame during recording. Such move-
ments are then missing from the recorded flocking event. As out-of-frame movement may
still be influencing the behaviour of the observed flock, this movement must be accounted
for during model fitting.

In this section we consider a real flocking event with missing observations. As foreshad-
owed in the previous sections, the missing observations of this dataset will be realised as a



Case Study II : foraging scoters 105

. . .

r











de
ns
ity

. .

σY









  

ν

.

.

.

No missingness Integrating over missingness Discarding missingness

Figure 7.14: Comparing posterior densities about the parameters of the Vicsek model with and
without missingness. The blue kernels show the posterior densities as if all the data
was observed. The red kernels show the posteriors when the missing observations were
integrated out. Finally, the purple kernels shows the posterior beliefs had the missing
observations been discarded.

consequence of employing fixed-location recording equipment.
The dataset considered describes the movements of a large number of surf scoters, a

migratory sea bird, which gather in groups to forage. The capturedflocking events take place
on the surface of a lake, and so movement is effectively restricted to a two-dimensional
plane. This dataset was provided courtesy of work performed by Lukeman (2009) and
Lukeman, Li and Edelstein-Keshet (2010). At the time of their publication the captured
events represented a tenfold increase in the number of individuals which could be reliably
linked between frames.

Unfortunately, owing to the fixed-location cameras used to record these flocking events,
there were often scoters out of view in the recorded frames. Figure 2.6 illustrates the steps
performed to extract the positions of individuals from raw footage; this figure also shows
how the flock occupied an area larger than that which the camera captured—resulting in
missing observations. As earlier, the missing data points can be partitioned into observa-
tions missing at the beginning of the recording event, and observations missing at the end
of the recording event.

7.2.1 Scoter data

Lukeman, Li and Edelstein-Keshet (2010) recorded a number of flocking events from an
aerial vantage point: an elevated promenade at the side of a large lake. From this position
the authors were able to direct a camera toward an inlet where overwintering scoters had
been observed foraging. Knowing the height of this camera above the water, and the angle
of its approach with the horizontal, the authors were able to transform the captured camera
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data back to “real-world” co-ordinates.

However, to reliably transformback fromcamera co-ordinates to real-world co-ordinates,
the height of the camera above the lake and its angle with the horizontal had to be fixed.
With the camera fixed in position, the authors then waited for flocking events to occur.
Recording began when individuals entered the camera’s field of vision, and ended when
all the individuals left the frame, or the flock became stationary. Each recording event cap-
tured the movements of around 170 scoters, with each event consisting of approximately 30
frames. However, of the recorded events between 16% and 64% of each flock’s movements
took place out-of-frame.

Lukeman, Li and Edelstein-Keshet (2010) discounted the influence of individuals out-
of-frame, and instead focused on reproducing radial and angular neighbour densities of
internal group members (edge individuals were also discarded). This approach, although
representing a significant step forward in the literature, came with its drawbacks. Most
significantly, focusing the fitting on reproducing radial and angular neighbour distributions
removed the dynamic component to the data which the authors worked so hard to achieve.
Additionally, the authors determined the size of the agents’ interaction radius by visual
inspection of nearest-neighbour densities; the interaction radius used in their model being
chosen before the fitting process began.

In this chapter we take a more holistic approach to model fitting; making sure to ac-
count for all individuals—both observed and missing, as well as internal and boundary
individuals—and focusing the fitting on reproducing the movements of the flock, rather
than some epiphenomena of their movements. Significant computation is necessary to
account for the large amount of data missing from the recorded flocking events.

7.2.2 Model fitting

As the computational demands of missing data problems increase as the amount of missing-
ness increases, we focus on the flocking event within the Lukeman dataset which displays
the least amount of missingness. For the events captured by Lukeman, Li and Edelstein-
Keshet (2010) this is represented by a sequence of 199 scoters moving over 23 frames. Of
the 199 × 23 = 4, 577 data points represented by this event, 680 (≈ 16%) occur outside the
visual field of the camera. This flock is visualised in Figure 7.15. From this figure we see that
the flock was strongly polarised throughout the recording event; with this observation we
consider an alignment-based model a plausible candidate model for fitting.

Figure 7.16 gives a visual representation of which data points were observed, and which
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Figure 7.15: A visualisation of the trajectories of foraging surf scoters in an analysed sequence. In
total, the sequence represents the movements of 199 scoters over 23 frames (4,577 data
points). The scoters move along the blue trajectories, starting from the positions de-
noted by the green markers and finishing at the positions shown by the red markers.
The black frame containing the trajectories represents an approximation of the fixed
field of vision of the recording equipment.

data points weremissing. In this visualisation bluemarkers represent observed data and red
markers represent missing data. From Figure 7.16 we see that in every frame there is at least
one missing scoter. As such, if we were to discard all the frames with as least one missing
scoter (as in the naive approach), we would discard the entire flocking event. Therefore,
to evaluate the likelihood of observing this flock we have no choice but to account for the
missing observations.

The simulated flocks considered in Sections 7.1.1 and 7.1.2 had between 10 and 20missing
observations per sequence. With 680 data points missing from the scoter sequence with the
least amount of missingness, this problem represents a considerable increase in complexity.
With this amount of missingness, long and expensive simulations were necessary to realise
a satisfactory number of samples from the posterior.

We fit a variation of the Vicsek model to this dataset where each agent interacts with
neighbours within distance r (Equation (4.4)), and experiences noise sampled from a gen-
eralised Student’s t distribution with ν degrees of freedom and scale σY (Equation (4.6)).
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Figure 7.16: A representation of the missing and observed data points of the foraging event illus-
trated in Figure 7.15. The x-axis represents the frame of the sequence, and the y-axis
corresponds to tracked individuals. A blue tile at location (t, i) tells us that scoter i
was observed in frame t. A red tile at location (t, i) indicates that scoter i was missing
at time t.

A random walk Metropolis–Hastings algorithm was implemented to infer the parameters
of this model. In a similar manner, a random walk Metropolis–Hastings algorithm, with
proposal scheme as outlined in Section 7.1.1, was used to infer the observations missing at
the beginning of the sequence. Finally, using a Gibbs step allowed observations missing at
the end of the sequence to be sampled. This sampler was implemented for 108 iterations.
To reduce the memory overhead of this sampler, the recorded samples were thinned by a
factor of 1000; meaning that all but every 1000th iteration of the sampler was discarded,
producing a total of 108/103 = 105 samples.

Previously we used summary plots—such as those in Figures 7.5 and 7.11—to help visu-
alise high-dimensional posterior distributions. However, with almost 700 dimensions, this
posterior has too many dimensions for even these summary plots. In such a situation it can
be informative to graphically assess the trace of the log-likelihood. If we can observe that
the log-likelihood has converged, we have strong evidence that the sampler has converged.
In Figure 7.17 we see a trace and histogram plot of evaluations of the log-likelihood. From
this plot we see evidence of convergence, as the log-likelihood oscillates regularly around
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Figure 7.17: Trace and histogram plots of the log-likelihood, as computed at every iteration of the
inference scheme. As it can be difficult to assess the convergence of all the parameters
for high-dimensional problems, as we have here, it can instead be informative to assess
the convergence of the log-likelihood. If we see that the value of the log-likelihood has
converged, then we have evidence that the chains targeting the corresponding paramet-
ers also converged.
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Figure 7.18: Samples drawn from the posterior distribution realised in fitting a sequence of the
Lukeman data to a variation of the Vicsek model. The posterior distribution of r is
non-normal, and tends towards zero, representing evidence that there is no explicit
alignment interaction between individuals.

some fixed location.
The parameters of the Vicsek model inferred in this fitting are shown in Figure 7.18. The

tendency of the interaction radius r towards zero suggests that there is no direct alignment
interaction between individuals of this flock. The flock’s highly polarised structure must
then be the result of behaviours unaccounted for by our model: such as attraction or repul-
sion interactions. With no effective interaction term, all observed directional changes must
be accounted for by the inferred noise parameters, as in the Null model (Section 4.2.1). The
inferred degrees of freedom and noise-scale parameters represent a diffuse noise distribu-
tion, reflecting their need to capture all directional changes.

In Figure 7.19 we see histogram plots of samples realised from the posterior: here rep-
resenting four directions missing at the end of the sequence. We see that the uncertainty in
the possible directions of motion of the missing agent is large. This large posterior variance
is a result of the large amounts of missingness. As no effective interaction term was realised,



110 Missing data

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5
θ1,16

0.0

0.2

0.4

0.6

0.8

de
ns
ity

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5
θ1,17

0.0

0.2

0.4

0.6

0.8

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5
θ1,18

0.0

0.2

0.4

0.6

0.8

1.0

de
ns
ity

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5
θ1,19

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7.19: Histogram plots of posterior draws of 4 missing directions (out of a total of 680missing
data points). The posterior draws visualised correspond to datamissing at the end of the
sequence. We see large amounts of uncertainty in these posterior densities, reflecting
the large amount of missingness represented by this sequence.

a diffuse noise structure was inferred to account for the observed directional changes. This
diffuse noise structure further contributes to the large posterior variance inferred for the
missing directions.

Although our model has been unable to capture the interactions between individuals
present in this flock, it is only by handling the missing data that we have been able to fit
this model and make this realisation.

Conclusions

In this chapter we considered the experimental set-ups required to record flocking events
in the wild. We saw missing data arises naturally as a consequence of recording data with
fixed-location cameras. However, as individuals which move out of frame may still be
influencing the movements of the observed flock, they cannot simply be ignored.

A naive approach to this missing data problem would be to discard all the frames in
which any single agent moves out of frame. Although this approach allows us to evaluate
the likelihood of the flock—and hence perform our desired fitting—it has the potential to
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drastically reduce the amount of data available for analysis.
We outlined an alternative approach in which all possible out-of-frame movements are

integrated over. For this approach we first partition missing data points into observations
missing at the beginning of a recording event and observations missing at the end of a
recording event. With this we outlined inference schemes which could infer data missing
under these two regimes.

Simulation studieswere performed inwhich an artificial fixedfieldof visionwas overlain
on the data. We demonstrated that our inference schemes were able to capture the true
values of the missing observations. We discussed how increasing the amount of missing
data increases the complexity, and hence computational demand, of the problem. Although
all care should be taken to avoid recording events with missing observations, we advised
that as datamissing at the end of a sequence could be handled at less computational expense
than data missing in the beginning, emphasis should be put on avoiding observations going
missing at the beginning of a sequence.

To consider the efficacy of our approach tomissing datawe compared posterior densities
generated when integrating over the missingness, to posterior densities on the same dataset
withoutmissingness, and to posterior densities realised with themissingness discarded (the
naive approach). We found that our approach to missingness generated posterior densities
closer to the “observed-all” densities than the naive approach was able to.

The developed methodology was then applied to a flocking event in which at least one
individual was out of view during every frame of the recording. Of the 4,577 data points
in the analysed sequence, 680 (≈ 16%) of the observations were missing. To evaluate the
likelihood of this data we had to be able to account for the position and direction of every
individual in the analysed frames. As at least one individual is missing in every frame,
discarding frames containing missingness is not a viable solution.

The large amountofmissing data in the analysed sequence resulted in a high-dimensional
posterior distribution, and hence a computationally intensive inference problem. Long
simulations were necessary to allow the simulated Markov chains to achieve convergence.
Although the inference scheme converged, our results showed evidence that there is no
explicit alignment interaction between individuals, suggesting the presence of interactions
not accounted for by ourmodel. As ourmodel couldn’t capture these interactions, it instead
attempted to account for directional changes through noise alone, which in turn resulted in
large uncertainties aboutmissing positions and directions ofmotion. Despite our candidate
model being unable to capture the interactions between individuals, it was only by handling
this missing data that we were able to come to this realisation.





Conclusions
Mathematical modelling has become a cornerstone of the study of collective behaviour, as
the formation of macro-level structure was realised possible by implementations of simple
behavioural rules. Although model simulation can be informative in its own right, its real
power comes in comparison with observation. Comparison of model prediction and real-
world observation is an essential part of any model-fitting and model-verification process.
However, until recently thorough comparison between collective behaviourmodel and data
has been limited by the availability of data of real flocking events.

In this work we acknowledged the technical challenges presented by the recording of
flocking events, and considered the affect of this on the resulting literature. A lack of data
with which to perform model-verification has resulted in a plethora of competing models
based on aprioristic assumptions about how individuals behave and respond to stimulus.
However, more recently there have been notable attempts to bridge the gap between model
and data. An overview of this recent work, and work prior to it, was presented in Chapter 2.

Backed by previous studies, we argued the importance of the quantification of uncer-
tainty during model-fitting. Bayesian inference, representing a fully-probabilistic approach
to parameter inference, is a natural approach to quantifying uncertainty. The underlying
philosophy of the Bayesian paradigm was outlined in Chapter 3. Here we also introduced
Markov chain Monte Carlo methods: a class of algorithms which allow a practitioner to
draw samples from the posterior distribution, whilst only requiring knowledge of the pos-
terior up to a constant of proportionality.

In fitting models to data it is advisable to first consider simple models, and to only in-
crease model-complexity as necessary. The Vicsek model in Chapter 4 was introduced as
one such simple model, accounting for directional changes as some combination of align-
ment interactions and noise. We questioned the biological-realism the zonal interaction
rule implemented by Vicsek represents, instead advocating the merits of continuously dif-
ferentiable interaction rules. As well as biological-realism, we acknowledged the difficulties
which discontinuous interaction rules pose for parameter inference.

Despite understandings of the importance of biological variation in nature, themajority
of models in the literature assume that all agents behave identically when presented with
the same stimulus. With this shortcoming in mind we introduced models with hierarchical
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structure: allowing intra-flock behavioural and biological variation.

Chapter 5 was a chapter of simulation studies. Simulation studies are a useful tool in
assessing the viability of performing parameter inference on real data. The models intro-
duced and developed in the preceding chapterwere forward simulated for known parameter
values. We then demonstrated that the Metropolis–Hastings and NUTS algorithms could
be used to accurately infer the true parameter values from observations of the simulated
flocks alone.

Having demonstrated the efficacy of ourapproach to inference on simulateddata, we pro-
ceeded to re-use our statistical machinery to perform inference on real data. In Chapter 6
we introduced a dataset consisting of three recording events of flocking sheep. To this data
we fit variations of the Vicsek model as introduced in Chapter 4. The within-sample pre-
dictive performance of these models was quantified with information criteria. Models were
then ranked by their performance. We observed that continuous interaction rules consist-
ently outranked their discrete counterpart, as well as observing evidence of non-normally
distributed noise. In general the models provided a good fit to data, however in one of
the sequences there was evidence of the existence of behaviours not accounted for in our
models. We speculated that these behaviours could be the result of some unaccounted for
interactions with the external environment, or additional inter-individual interactions such
as attraction or repulsion.

As it is impossible to predict when and where a given flocking event may occur next,
there can become a frustrating “right-place-right-time” component to data collection. Flock-
ing events may be captured by establishing fixed-location recording equipment where a
researcher believes a flocking event may occur in the future. However, the stationary nature
of the recording equipment can result in capturing incomplete flocking events. To eval-
uate the likelihood of the data—a critical component of any model-fitting, Bayesian or
otherwise—the observation of every individual in the flock, at every recorded frame, is
required. A naive solution to this problem is to discard every frame in which the entire
flock isn’t visible. However, this approach has the potential to drastically reduce the amount
of data available for analysis. In Chapter 7 we presented an alternative approach which
incorporates the additional uncertainty introduced by missingness into our posterior distri-
butions. Simulation studies were performed which showed that our approach consistently
outperformed the naive approach of discarding data.

The methodology we developed in Chapter 7 was used on a real dataset exhibiting
missingness. This dataset detailed the movements of ducks foraging on the surface of a
lake, and was captured with fixed-location recording equipment. A large number of data
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points were missing from this sequence, as much movement took place out-of-frame. This
presented a computationally demanding, high-dimensional inference problem. In fitting
a variation of Vicsek to this data, we observed evidence that there is no direct alignment
interaction between individuals. We postulated the existence of repulsion or attraction
behaviours, not accounted for by our model, which maintain the flocks highly polarised
structure. Although our model could not explain the interactions between individuals,
it was only by accounting for the missing observations that we were able to reach this
conclusion.

We demonstrated to the reader that although fitting models of collective motion to real
data is difficult, the process can be greatly eased by using existing, general purpose inference
tools such as the Stan programming language. Such software will undoubtedly outperform
the hand-codedMCMC algorithms of all but the most talented computer programmers. To
the reader we also emphasise the utility of simulation studies. Simulation studies represent
an invaluable opportunity to assess the feasibility of parameter inference on any model of
interest, and give scope to develop and debug inference code in an environment where the
answer is known. Although methodology was outlined which allowed the researcher to
account for missing data within recordings of flocking events, the computational cost that
this approach incurs is so large that in the first instance the greatest effort should be made
to avoid missing data occurring during the recording process.

Throughout this thesis we demonstrated a fully-Bayesian approach to fitting models
of collective behaviour to real and simulated data. We advocated consideration of simple
models over the needlessly complex, and the addition of complexity only when simpler
models perform poorly. Although this work only considered a small number of possible
candidate models, the framework we outlined can be used to compare any number of
competing models.





A
Directional statistics
Circular data arises naturally in the study of collective behaviour; most commonly, in de-
scribing the direction of motion of individuals. Given some dataset, the first instinct of the
scientist is to summarise and visualise the data. However, such a researcher should proceed
with caution: circular data cannot be treated as if it were its linear counterpart.

In this appendix we shall consider why standard techniques, methods and summaries
are inappropriate to use with circular data. After this realisation, we proceed to introduce
some useful techniques which can be used to handle and visualise directional data.

A.1 Conventions

Directions can be represented as rotations with respect to some zero-direction, or origin.
The practitioner is free to chose the zero-direction as they feel appropriate. In a similar way,
the practitioner may choose whether a clockwise or anti-clockwise rotation is taken as the
positive direction.

Recall that angles may be represented in units of degrees or radians. To convert between
degrees and radians we may multiply by a factor of π/180○.

In this thesis we define the zero-direction as the direction from the point (0, 0) along
the positive x-axis. For the most part, we shall measure angles in units of radians, and
take anti-clockwise rotations as the positive direction. The schematics of this setup are
illustrated in Figure A.1(a). Occasionally, we shall appeal to degrees and their comparative
intuitiveness, and in these cases we shall use the setup illustrated in Figure A.1(b).
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Figure A.1: Visualising the conventions used in this thesis to measure (a): radians and (b): degrees.

A.2 Visualisation

In possession of a dataset, one of the first instincts of the scientist is to visualise their data.
The researcher is undoubtedly familiar with a large number of graph types. Yet choosing
the most suitable graph to display a given dataset is crucial in making an informative plot.

Traditional histograms are not very good for visualising directional data; consider, for
example, interpreting the directions plotted in Figure A.2. Polar histograms (sometimes
known as rose plots)make formore intuitive representations of angles. Instead of using bars,
as the histogram does, the rose plot bins data into sectors of a circle. Here, the area of each
sector is constructed to be proportional to the frequency of data points in the corresponding
bin (Mardia and Jupp 2009).

To advocate the advantages of the rose plot we shall visualise two randomly generated
datasets. The first dataset consists of one hundred realisations from a uniform U(−π, π)
distribution, and the second dataset consists of ten thousand draws from a normal N(0, 1)
distribution.

In Figure A.2 we visualise the two datasets using traditional histogram plots. From
this figure we get a good idea of the distribution of the data, however we get no sense of
direction. In Figure A.3 we visualise the same data. Here we also get a good idea of how
the directions are distributed. However, using the rose plot means we get a very intuitive
representation of direction.
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Figure A.2: Using histograms to visualise (a): one hundred samples drawn from U(−π, π) and (b):
ten thousand samples drawn from N(0, 1).
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Figure A.3: Using polar histograms to visualise (a): one hundred samples drawn from U(−π, π)
and (b): ten thousand samples drawn from N(0, 1).

A.3 Summary statistics

Summary statistics are a useful tool to give an idea of the general characteristics of a dataset.
Probably the first statistic whichwe learn to compute is the arithmeticmean. The arithmetic
mean, however, is not an appropriate statistic to use with circular data.

Consider thatwewish to take an average of the angles 10○ and 350○. Using the arithmetic
meanwe compute an average of 180○. However, this average points in the opposite direction
to which we intuitively expect. In Figure A.4(a) we visualise this result.

Before introducing the circularmean it is first necessary to introduce the atan2 function.
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○ , ○

(a) Arithmetic mean (red).

○ , ○

(b) Circular mean (green).

Figure A.4: Computing the average of 10○ and 350○ (represented by the blue arrows), using two
different mean functions. The green and red arrows show the average computed by
each method.

The atan2 function dates back to the Fortran programming language (Organick 1966). Itwas
introduced to overcome some of the inconveniences inherent in the atan (or tan−1) function.
Consider that the inverse tangent function has codomain (−π/2, π/2), though we are often
interested in directions in the range (−π, π]. In addition to this, the arctan function is not
quadrant-aware; that is, it cannot distinguish between directions which differ by π radians
(see that tan−1(θ + π) = tan−1(θ)). As an example, consider calculating the direction from
the x-axis to the ray extending from the origin to the point (1, 1). Naturally, we’d reach
for tan−1 to compute the angle as tan−1(1/1) = π/4, as expected. Now, consider that we
wish to calculate the direction from the x-axis to the ray extending from the origin to the
point (−1,−1). By inspection, or intuitively, we expect an answer of −3π/4 — however, we
compute the answer as tan−1(−1/−1) = π/4. The angle calculated using the inverse tangent
function points in the opposite direction to what we expect.

The atan2 function, however, does not have these shortcomings. The function is con-
structed to be quadrant-aware: correcting the computations of tan−1 to return the directions
we intuitively expect. It does so by adding a correction termwhich depends on the quadrant
which contains our point of interest (x , y). The correction term applied in each of the four
quadrants is visualised in Figure A.5. With these considerations, atan2 can be realised by
the piecewise function:
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Figure A.5: An illustration of the quadrant corrections made by atan2.

atan2(y, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

atan(y/x) if x > 0,

atan(y/x) + π if x < 0 and y ≥ 0,

atan(y/x) − π if x < 0 and y < 0,

π/2 if x = 0 and y > 0,

−π/2 if x = 0 and y < 0,

undefined if x = 0 and y = 0.

(A.1)

As we saw in Figure A.4(a), averaging a set of angles with the arithmetic mean does not
give the desired result. Instead, we must refer to the circular mean. Given a set of angles
θ = (θ1, . . . , θn)T , we may compute their circular mean as:

⟨θ⟩ = atan2( 1
n

n
∑
j=1

sin(θ j),
1
n

n
∑
j=1

cos(θ j)), (A.2)

where the atan2 function is defined in Equation (A.1) (Fisher 1995).

The definition of the circular mean given in equation Equation (A.2) works by convert-
ing the angles into Cartesian co-ordinates: representing the directions as points on the unit
circle. The centre of mass of the Cartesian co-ordinates is then computed, and the resulting
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position is converted back to a direction, resulting in our mean angle.
In practice, the 1/n which occurs in Equation (A.2) is superfluous. Referring to Equa-

tion (A.1), see that all of the cases involving atan require the quotient of x and y. Because
of this ratio, the 1/n terms will always cancel, and so aren’t strictly necessary.

A.4 von Mises distribu tion

ThevonMises distribution, sometimes simply referred to as the circularnormal distribution,
is a continuous probability density function defined on the circle, with support [−π, π). The
distribution is parameterised by two parameters: µ ∈ [−π, π) and κ > 0. The parameter µ
is a measure of location and the parameter κ is a measure of spread. These parameters, µ
and κ, are analogous to µ and 1/σ2 of the normal distribution.

For the angle θ, the von Mises distribution has probability density:

f (θ ∣ µ, κ) = eκ cos(θ−µ)
2πI0(κ)

, (A.3)

where the normalising constant, I0(κ), is the modified Bessel function of the first kind and
order zero (Jammalamadaka and Sengupta 2001).

In this thesis we do not use the von Mises distribution. Instead, we continue to use a
normal distribution to model circular data. This approximation is appropriate when κ is
large (that is, when there is little dispersion). For large κ it is known that I0(κ) ≈ ek/

√
2πκ.

Using this, and the Taylor expansion cos(α) ≈ 1 − α2/2, from Equation (A.3) we have:

f (θ ∣ µ, κ) ≈ eκ[1− 1
2 (θ−µ)2]

2πek/
√

2πκ

= e− κ
2 (θ−µ)2

√
2π/κ

,

which is just the probability density of the normal distribution with mean µ and precision
κ. So we see, for distributions with small dispersion, it is appropriate to approximate the
von Mises distribution with a normal distribution.
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